利用用户消费行为进行有效的项目标记

Shen Liu, Hongyan Liu
{"title":"利用用户消费行为进行有效的项目标记","authors":"Shen Liu, Hongyan Liu","doi":"10.1145/3132847.3133071","DOIUrl":null,"url":null,"abstract":"Automatic tagging techniques are important for many applications such as searching and recommendation, which has attracted many researchers' attention in recent years. Existing methods mainly rely on users' tagging behavior or items' content information for tagging, yet users' consuming behavior is ignored. In this paper, we propose to leverage such information and introduce a probabilistic model called joint-tagging LDA to improve tagging accuracy. An effective algorithm based on Zero-Order Collapsed Variational Bayes is developed. Experiments conducted on a real dataset demonstrate that joint-tagging LDA outperforms existing competing methods.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploiting User Consuming Behavior for Effective Item Tagging\",\"authors\":\"Shen Liu, Hongyan Liu\",\"doi\":\"10.1145/3132847.3133071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic tagging techniques are important for many applications such as searching and recommendation, which has attracted many researchers' attention in recent years. Existing methods mainly rely on users' tagging behavior or items' content information for tagging, yet users' consuming behavior is ignored. In this paper, we propose to leverage such information and introduce a probabilistic model called joint-tagging LDA to improve tagging accuracy. An effective algorithm based on Zero-Order Collapsed Variational Bayes is developed. Experiments conducted on a real dataset demonstrate that joint-tagging LDA outperforms existing competing methods.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3133071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动标注技术在搜索和推荐等许多应用中具有重要意义,近年来引起了许多研究者的关注。现有的方法主要依靠用户的标注行为或物品的内容信息进行标注,忽略了用户的消费行为。在本文中,我们建议利用这些信息并引入一种称为联合标记LDA的概率模型来提高标记精度。提出了一种基于零阶坍缩变分贝叶斯的有效算法。在真实数据集上进行的实验表明,联合标记LDA优于现有的竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting User Consuming Behavior for Effective Item Tagging
Automatic tagging techniques are important for many applications such as searching and recommendation, which has attracted many researchers' attention in recent years. Existing methods mainly rely on users' tagging behavior or items' content information for tagging, yet users' consuming behavior is ignored. In this paper, we propose to leverage such information and introduce a probabilistic model called joint-tagging LDA to improve tagging accuracy. An effective algorithm based on Zero-Order Collapsed Variational Bayes is developed. Experiments conducted on a real dataset demonstrate that joint-tagging LDA outperforms existing competing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信