{"title":"论在居民点外敷设6 - 35kv电缆电力线路代替架空电力线路的便利性","authors":"M. Korotkevich, S. Podgaisky","doi":"10.21122/1029-7448-2023-65-5-463-476","DOIUrl":null,"url":null,"abstract":". It is noted that at present, 10 and 35 kV overhead power transmission lines are being laid outside the settlements of the Republic of Belarus on reinforced concrete vibrated (10 kV) and centrifuged (35 kV) poles that are characterized by low reliability and damaging the environment (on account of alienation of land for poles, the need to make a wide clearing for laying in the forest, obstructions by poles and wires of lines to the operation of agricultural machinery, the danger of electric shock to personnel and the public). It is possible to avoid these disadvantages if, instead of overhead lines, power transmission cables with cables insulated by cross-linked polyethylene are used which are characterized by a very low failure flow parameter. Contrary to the prevailing opinion about the higher cost of cable power transmission lines compared to overhead ones of the same rated voltage, it turned out that, taking into account reliability, the cost of electricity lost in the lines for a year, damage to the environment and to the power system caused by the need to perform more expensive emergency repairs (as compared to a planned one), laying cable lines with three-core and single-core cables of a voltage of 10 and 35 kV instead of overhead cables outside the populated area is fairly justified. In this connection, the laying of three-core cables is more preferable. It should be also borne in mind that with an increase in the length of cable lines, the capacitive earth fault current increases, to compensate for which additional devices are needed to be installed in power centers, viz. arc-extinguishing reactors or resistors, accounting for the cost of which (up to 22 % of the cost of one kilometer of cable line) does not significantly affect the conclusions we have drawn regarding the effectiveness of using 6–35 kV cable power lines in an unpopulated area instead of overhead ones, however.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Expediency of Laying Cable Power Lines with a Voltage of 6–35 kV Outside Settlements Instead of Overhead Power Lines\",\"authors\":\"M. Korotkevich, S. Podgaisky\",\"doi\":\"10.21122/1029-7448-2023-65-5-463-476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". It is noted that at present, 10 and 35 kV overhead power transmission lines are being laid outside the settlements of the Republic of Belarus on reinforced concrete vibrated (10 kV) and centrifuged (35 kV) poles that are characterized by low reliability and damaging the environment (on account of alienation of land for poles, the need to make a wide clearing for laying in the forest, obstructions by poles and wires of lines to the operation of agricultural machinery, the danger of electric shock to personnel and the public). It is possible to avoid these disadvantages if, instead of overhead lines, power transmission cables with cables insulated by cross-linked polyethylene are used which are characterized by a very low failure flow parameter. Contrary to the prevailing opinion about the higher cost of cable power transmission lines compared to overhead ones of the same rated voltage, it turned out that, taking into account reliability, the cost of electricity lost in the lines for a year, damage to the environment and to the power system caused by the need to perform more expensive emergency repairs (as compared to a planned one), laying cable lines with three-core and single-core cables of a voltage of 10 and 35 kV instead of overhead cables outside the populated area is fairly justified. In this connection, the laying of three-core cables is more preferable. It should be also borne in mind that with an increase in the length of cable lines, the capacitive earth fault current increases, to compensate for which additional devices are needed to be installed in power centers, viz. arc-extinguishing reactors or resistors, accounting for the cost of which (up to 22 % of the cost of one kilometer of cable line) does not significantly affect the conclusions we have drawn regarding the effectiveness of using 6–35 kV cable power lines in an unpopulated area instead of overhead ones, however.\",\"PeriodicalId\":52141,\"journal\":{\"name\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1029-7448-2023-65-5-463-476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2023-65-5-463-476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
On the Expediency of Laying Cable Power Lines with a Voltage of 6–35 kV Outside Settlements Instead of Overhead Power Lines
. It is noted that at present, 10 and 35 kV overhead power transmission lines are being laid outside the settlements of the Republic of Belarus on reinforced concrete vibrated (10 kV) and centrifuged (35 kV) poles that are characterized by low reliability and damaging the environment (on account of alienation of land for poles, the need to make a wide clearing for laying in the forest, obstructions by poles and wires of lines to the operation of agricultural machinery, the danger of electric shock to personnel and the public). It is possible to avoid these disadvantages if, instead of overhead lines, power transmission cables with cables insulated by cross-linked polyethylene are used which are characterized by a very low failure flow parameter. Contrary to the prevailing opinion about the higher cost of cable power transmission lines compared to overhead ones of the same rated voltage, it turned out that, taking into account reliability, the cost of electricity lost in the lines for a year, damage to the environment and to the power system caused by the need to perform more expensive emergency repairs (as compared to a planned one), laying cable lines with three-core and single-core cables of a voltage of 10 and 35 kV instead of overhead cables outside the populated area is fairly justified. In this connection, the laying of three-core cables is more preferable. It should be also borne in mind that with an increase in the length of cable lines, the capacitive earth fault current increases, to compensate for which additional devices are needed to be installed in power centers, viz. arc-extinguishing reactors or resistors, accounting for the cost of which (up to 22 % of the cost of one kilometer of cable line) does not significantly affect the conclusions we have drawn regarding the effectiveness of using 6–35 kV cable power lines in an unpopulated area instead of overhead ones, however.
期刊介绍:
The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.