m-幂等超环的交换商结构

IF 0.8 4区 数学 Q2 MATHEMATICS
A. Zadeh, M. Norouzi, I. Cristea
{"title":"m-幂等超环的交换商结构","authors":"A. Zadeh, M. Norouzi, I. Cristea","doi":"10.2478/auom-2020-0015","DOIUrl":null,"url":null,"abstract":"Abstract The α* -relation is a fundamental relation on hyperrings, being the smallest strongly regular relation on hyperrings such that the quotient structure R/α* is a commutative ring. In this paper we introduce on hyperrings the relation ζm, which is smaller than α*, and show that, on a particular class of m-idempotent hyperrings R, it is the smallest strongly regular relation such that the quotient ring R/ζ*m is commutative. Some properties of this new relation and its differences from the α* -relation are illustrated and discussed. Finally, we show that ζm is a new representation for α* on this particular class of m-idempotent hyperrings.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"9 1","pages":"219 - 236"},"PeriodicalIF":0.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The commutative quotient structure of m-idempotent hyperrings\",\"authors\":\"A. Zadeh, M. Norouzi, I. Cristea\",\"doi\":\"10.2478/auom-2020-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The α* -relation is a fundamental relation on hyperrings, being the smallest strongly regular relation on hyperrings such that the quotient structure R/α* is a commutative ring. In this paper we introduce on hyperrings the relation ζm, which is smaller than α*, and show that, on a particular class of m-idempotent hyperrings R, it is the smallest strongly regular relation such that the quotient ring R/ζ*m is commutative. Some properties of this new relation and its differences from the α* -relation are illustrated and discussed. Finally, we show that ζm is a new representation for α* on this particular class of m-idempotent hyperrings.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"9 1\",\"pages\":\"219 - 236\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

α*关系是超环上的一个基本关系,它是超环上使商结构R/α*为交换环的最小的强正则关系。本文在超环上引入了小于α*的关系ζm,并证明了在一类特定的m-幂等超环R上,它是使商环R/ζ*m可交换的最小强正则关系。说明并讨论了这一新关系的一些性质及其与α*关系的区别。最后,我们证明了在这类m-幂等超环上,ζm是α*的一个新的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The commutative quotient structure of m-idempotent hyperrings
Abstract The α* -relation is a fundamental relation on hyperrings, being the smallest strongly regular relation on hyperrings such that the quotient structure R/α* is a commutative ring. In this paper we introduce on hyperrings the relation ζm, which is smaller than α*, and show that, on a particular class of m-idempotent hyperrings R, it is the smallest strongly regular relation such that the quotient ring R/ζ*m is commutative. Some properties of this new relation and its differences from the α* -relation are illustrated and discussed. Finally, we show that ζm is a new representation for α* on this particular class of m-idempotent hyperrings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信