m-幂等超环的交换商结构

Pub Date : 2020-03-01 DOI:10.2478/auom-2020-0015
A. Zadeh, M. Norouzi, I. Cristea
{"title":"m-幂等超环的交换商结构","authors":"A. Zadeh, M. Norouzi, I. Cristea","doi":"10.2478/auom-2020-0015","DOIUrl":null,"url":null,"abstract":"Abstract The α* -relation is a fundamental relation on hyperrings, being the smallest strongly regular relation on hyperrings such that the quotient structure R/α* is a commutative ring. In this paper we introduce on hyperrings the relation ζm, which is smaller than α*, and show that, on a particular class of m-idempotent hyperrings R, it is the smallest strongly regular relation such that the quotient ring R/ζ*m is commutative. Some properties of this new relation and its differences from the α* -relation are illustrated and discussed. Finally, we show that ζm is a new representation for α* on this particular class of m-idempotent hyperrings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The commutative quotient structure of m-idempotent hyperrings\",\"authors\":\"A. Zadeh, M. Norouzi, I. Cristea\",\"doi\":\"10.2478/auom-2020-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The α* -relation is a fundamental relation on hyperrings, being the smallest strongly regular relation on hyperrings such that the quotient structure R/α* is a commutative ring. In this paper we introduce on hyperrings the relation ζm, which is smaller than α*, and show that, on a particular class of m-idempotent hyperrings R, it is the smallest strongly regular relation such that the quotient ring R/ζ*m is commutative. Some properties of this new relation and its differences from the α* -relation are illustrated and discussed. Finally, we show that ζm is a new representation for α* on this particular class of m-idempotent hyperrings.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

α*关系是超环上的一个基本关系,它是超环上使商结构R/α*为交换环的最小的强正则关系。本文在超环上引入了小于α*的关系ζm,并证明了在一类特定的m-幂等超环R上,它是使商环R/ζ*m可交换的最小强正则关系。说明并讨论了这一新关系的一些性质及其与α*关系的区别。最后,我们证明了在这类m-幂等超环上,ζm是α*的一个新的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The commutative quotient structure of m-idempotent hyperrings
Abstract The α* -relation is a fundamental relation on hyperrings, being the smallest strongly regular relation on hyperrings such that the quotient structure R/α* is a commutative ring. In this paper we introduce on hyperrings the relation ζm, which is smaller than α*, and show that, on a particular class of m-idempotent hyperrings R, it is the smallest strongly regular relation such that the quotient ring R/ζ*m is commutative. Some properties of this new relation and its differences from the α* -relation are illustrated and discussed. Finally, we show that ζm is a new representation for α* on this particular class of m-idempotent hyperrings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信