分离变量的相关函数:XXX自旋链

G. Niccoli, Hao Pei, V. Terras
{"title":"分离变量的相关函数:XXX自旋链","authors":"G. Niccoli, Hao Pei, V. Terras","doi":"10.21468/SCIPOSTPHYS.10.1.006","DOIUrl":null,"url":null,"abstract":"We explain how to compute correlation functions at zero temperature within the framework of the quantum version of the Separation of Variables (SoV) in the case of a simple model: the XXX Heisenberg chain of spin 1/2 with twisted (quasi-periodic) boundary conditions. We first detail all steps of our method in the case of anti-periodic boundary conditions. The model can be solved in the SoV framework by introducing inhomogeneity parameters. The action of local operators on the eigenstates are then naturally expressed in terms of multiple sums over these inhomogeneity parameters. We explain how to transform these sums over inhomogeneity parameters into multiple contour integrals. Evaluating these multiple integrals by the residues of the poles outside the integration contours, we rewrite this action as a sum involving the roots of the Baxter polynomial plus a contribution of the poles at infinity. We show that the contribution of the poles at infinity vanishes in the thermodynamic limit, and that we recover in this limit for the zero-temperature correlation functions the multiple integral representation that had been previously obtained through the study of the periodic case by Bethe Ansatz or through the study of the infinite volume model by the q-vertex operator approach. We finally show that the method can easily be generalized to the case of a more general non-diagonal twist: the corresponding weights of the different terms for the correlation functions in finite volume are then modified, but we recover in the thermodynamic limit the same multiple integral representation than in the periodic or anti-periodic case, hence proving the independence of the thermodynamic limit of the correlation functions with respect to the particular form of the boundary twist.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Correlation functions by separation of variables: the XXX spin chain\",\"authors\":\"G. Niccoli, Hao Pei, V. Terras\",\"doi\":\"10.21468/SCIPOSTPHYS.10.1.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explain how to compute correlation functions at zero temperature within the framework of the quantum version of the Separation of Variables (SoV) in the case of a simple model: the XXX Heisenberg chain of spin 1/2 with twisted (quasi-periodic) boundary conditions. We first detail all steps of our method in the case of anti-periodic boundary conditions. The model can be solved in the SoV framework by introducing inhomogeneity parameters. The action of local operators on the eigenstates are then naturally expressed in terms of multiple sums over these inhomogeneity parameters. We explain how to transform these sums over inhomogeneity parameters into multiple contour integrals. Evaluating these multiple integrals by the residues of the poles outside the integration contours, we rewrite this action as a sum involving the roots of the Baxter polynomial plus a contribution of the poles at infinity. We show that the contribution of the poles at infinity vanishes in the thermodynamic limit, and that we recover in this limit for the zero-temperature correlation functions the multiple integral representation that had been previously obtained through the study of the periodic case by Bethe Ansatz or through the study of the infinite volume model by the q-vertex operator approach. We finally show that the method can easily be generalized to the case of a more general non-diagonal twist: the corresponding weights of the different terms for the correlation functions in finite volume are then modified, but we recover in the thermodynamic limit the same multiple integral representation than in the periodic or anti-periodic case, hence proving the independence of the thermodynamic limit of the correlation functions with respect to the particular form of the boundary twist.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SCIPOSTPHYS.10.1.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.1.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们解释了如何在一个简单模型的情况下,在量子版本的变量分离(SoV)框架内计算零温度下的相关函数:具有扭曲(准周期)边界条件的自旋1/2的XXX海森堡链。我们首先详细说明了在反周期边界条件下我们的方法的所有步骤。通过引入非均匀性参数,可以在SoV框架下求解该模型。局部算符对特征态的作用自然地表示为对这些非齐次参数的多次求和。我们解释了如何将这些非齐次参数上的和转换成多个轮廓积分。通过积分轮廓外的极点的残数来计算这些多重积分,我们把这个动作重写为包含Baxter多项式根的和加上无穷远处极点的贡献。我们证明了无穷远处极点的贡献在热力学极限中消失,并且我们在这个极限中恢复了零温度相关函数的多重积分表示,这些表示是以前通过Bethe Ansatz对周期情况的研究或通过q顶点算子方法对无限体积模型的研究获得的。我们最后表明,该方法可以很容易地推广到更一般的非对角扭转的情况:然后修改有限体积中相关函数的不同项的相应权值,但我们在热力学极限中恢复了与在周期或反周期情况下相同的多重积分表示,从而证明了相关函数的热力学极限相对于边界扭转的特定形式的独立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation functions by separation of variables: the XXX spin chain
We explain how to compute correlation functions at zero temperature within the framework of the quantum version of the Separation of Variables (SoV) in the case of a simple model: the XXX Heisenberg chain of spin 1/2 with twisted (quasi-periodic) boundary conditions. We first detail all steps of our method in the case of anti-periodic boundary conditions. The model can be solved in the SoV framework by introducing inhomogeneity parameters. The action of local operators on the eigenstates are then naturally expressed in terms of multiple sums over these inhomogeneity parameters. We explain how to transform these sums over inhomogeneity parameters into multiple contour integrals. Evaluating these multiple integrals by the residues of the poles outside the integration contours, we rewrite this action as a sum involving the roots of the Baxter polynomial plus a contribution of the poles at infinity. We show that the contribution of the poles at infinity vanishes in the thermodynamic limit, and that we recover in this limit for the zero-temperature correlation functions the multiple integral representation that had been previously obtained through the study of the periodic case by Bethe Ansatz or through the study of the infinite volume model by the q-vertex operator approach. We finally show that the method can easily be generalized to the case of a more general non-diagonal twist: the corresponding weights of the different terms for the correlation functions in finite volume are then modified, but we recover in the thermodynamic limit the same multiple integral representation than in the periodic or anti-periodic case, hence proving the independence of the thermodynamic limit of the correlation functions with respect to the particular form of the boundary twist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信