为数据库系统中的联接查询进行彻底的数据剪枝

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Gao Jintao;Li Zhanhuai;Sun Jian
{"title":"为数据库系统中的联接查询进行彻底的数据剪枝","authors":"Gao Jintao;Li Zhanhuai;Sun Jian","doi":"10.1109/TSUSC.2023.3279382","DOIUrl":null,"url":null,"abstract":"The improvement of robustness and efficiency for multi-way equijoin query is challenging, no-matter for centralized database systems or distributed database systems. Due to lots of unnecessary data existing during query processing, these two metrics will be seriously reduced. If we can thoroughly prune unnecessary data in advance, the robustness and efficiency will be highly improved. However, the pruning power of current strategies, such as predicate push-down and algebraic equivalence, is limited. We present deepDP, a powerful, generalized, and efficient strategy for data pruning. deepDP builds multiple independent pruning spaces by generating longest transitive closures and applies appropriate data pruning strategy for each pruning space. For thoroughly pruning unnecessary data, deepDP employs \n<inline-formula><tex-math>$\\alpha \\cdot \\beta$</tex-math></inline-formula>\n pruning strategy to clean each pruning space based on a newly designed statistic information-Hollow Range and re-shuffles the elements in all pruned spaces for maximizing robustness and efficiency benefits meanwhile minimizing the invasion. We implement deepDP in PostgreSQL but are not limited to it, and evaluate deepDP on TPC-H, JOB, and our synthesis benchmark–DHR. The experiment results show that compared to traditional data pruning strategy, deepDP can improve multi-way equijoin query on efficiency by 3.5x.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 3","pages":"409-421"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thorough Data Pruning for Join Query in Database System\",\"authors\":\"Gao Jintao;Li Zhanhuai;Sun Jian\",\"doi\":\"10.1109/TSUSC.2023.3279382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The improvement of robustness and efficiency for multi-way equijoin query is challenging, no-matter for centralized database systems or distributed database systems. Due to lots of unnecessary data existing during query processing, these two metrics will be seriously reduced. If we can thoroughly prune unnecessary data in advance, the robustness and efficiency will be highly improved. However, the pruning power of current strategies, such as predicate push-down and algebraic equivalence, is limited. We present deepDP, a powerful, generalized, and efficient strategy for data pruning. deepDP builds multiple independent pruning spaces by generating longest transitive closures and applies appropriate data pruning strategy for each pruning space. For thoroughly pruning unnecessary data, deepDP employs \\n<inline-formula><tex-math>$\\\\alpha \\\\cdot \\\\beta$</tex-math></inline-formula>\\n pruning strategy to clean each pruning space based on a newly designed statistic information-Hollow Range and re-shuffles the elements in all pruned spaces for maximizing robustness and efficiency benefits meanwhile minimizing the invasion. We implement deepDP in PostgreSQL but are not limited to it, and evaluate deepDP on TPC-H, JOB, and our synthesis benchmark–DHR. The experiment results show that compared to traditional data pruning strategy, deepDP can improve multi-way equijoin query on efficiency by 3.5x.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 3\",\"pages\":\"409-421\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10144258/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10144258/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

无论对于集中式数据库系统还是分布式数据库系统,提高多向等连接查询的健壮性和效率都是一项挑战。由于在查询处理过程中存在大量不必要的数据,这两项指标都会严重下降。如果能提前彻底剪除不必要的数据,就能极大地提高健壮性和效率。然而,目前的策略(如谓词下推和代数等价)的剪枝能力有限。我们提出了一种强大、通用且高效的数据剪枝策略--deepDP。 deepDP 通过生成最长的传递闭包来构建多个独立的剪枝空间,并为每个剪枝空间应用适当的数据剪枝策略。为了彻底剪枝不必要的数据,deepDP 采用了 $\alpha \cdot \beta$ 剪枝策略,根据新设计的统计信息--空心范围(Hollow Range)来清理每个剪枝空间,并重新洗牌所有剪枝空间中的元素,以最大限度地提高鲁棒性和效率,同时最大限度地减少入侵。我们在 PostgreSQL 中实现了 deepDP,但并不局限于此,并在 TPC-H、JOB 和我们的综合基准--DHR 上对 deepDP 进行了评估。实验结果表明,与传统的数据剪枝策略相比,deepDP 能将多向等重合查询的效率提高 3.5 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thorough Data Pruning for Join Query in Database System
The improvement of robustness and efficiency for multi-way equijoin query is challenging, no-matter for centralized database systems or distributed database systems. Due to lots of unnecessary data existing during query processing, these two metrics will be seriously reduced. If we can thoroughly prune unnecessary data in advance, the robustness and efficiency will be highly improved. However, the pruning power of current strategies, such as predicate push-down and algebraic equivalence, is limited. We present deepDP, a powerful, generalized, and efficient strategy for data pruning. deepDP builds multiple independent pruning spaces by generating longest transitive closures and applies appropriate data pruning strategy for each pruning space. For thoroughly pruning unnecessary data, deepDP employs $\alpha \cdot \beta$ pruning strategy to clean each pruning space based on a newly designed statistic information-Hollow Range and re-shuffles the elements in all pruned spaces for maximizing robustness and efficiency benefits meanwhile minimizing the invasion. We implement deepDP in PostgreSQL but are not limited to it, and evaluate deepDP on TPC-H, JOB, and our synthesis benchmark–DHR. The experiment results show that compared to traditional data pruning strategy, deepDP can improve multi-way equijoin query on efficiency by 3.5x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信