{"title":"取代基对Johnson-Claisen重排影响的研究:DFT方法","authors":"Rahim Ghadari, Ahmad Shaabani","doi":"10.1016/j.theochem.2010.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>The uncatalyzed Johnson–Claisen rearrangement has been investigated at the B3LYP/6-311G(d,p) level of theory. The effect of electron donating and electron withdrawing substitutions in different positions on the transition state has been studied. Our results show that electron-donating substituents accelerate rearrangement while electron-withdrawing substituents act in opposite direction and decelerate the reaction. The amount of acceleration or deceleration depends on substituent position. In addition to mono-substituted compounds, di-substituted compounds have been also investigated. All of the calculations have been carried out in gas phase.</p></div>","PeriodicalId":16419,"journal":{"name":"Journal of Molecular Structure-theochem","volume":"961 1","pages":"Pages 83-87"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.theochem.2010.09.004","citationCount":"6","resultStr":"{\"title\":\"Investigation of substituent effect on the Johnson–Claisen rearrangement: A DFT approach\",\"authors\":\"Rahim Ghadari, Ahmad Shaabani\",\"doi\":\"10.1016/j.theochem.2010.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The uncatalyzed Johnson–Claisen rearrangement has been investigated at the B3LYP/6-311G(d,p) level of theory. The effect of electron donating and electron withdrawing substitutions in different positions on the transition state has been studied. Our results show that electron-donating substituents accelerate rearrangement while electron-withdrawing substituents act in opposite direction and decelerate the reaction. The amount of acceleration or deceleration depends on substituent position. In addition to mono-substituted compounds, di-substituted compounds have been also investigated. All of the calculations have been carried out in gas phase.</p></div>\",\"PeriodicalId\":16419,\"journal\":{\"name\":\"Journal of Molecular Structure-theochem\",\"volume\":\"961 1\",\"pages\":\"Pages 83-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.theochem.2010.09.004\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure-theochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166128010005749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure-theochem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166128010005749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of substituent effect on the Johnson–Claisen rearrangement: A DFT approach
The uncatalyzed Johnson–Claisen rearrangement has been investigated at the B3LYP/6-311G(d,p) level of theory. The effect of electron donating and electron withdrawing substitutions in different positions on the transition state has been studied. Our results show that electron-donating substituents accelerate rearrangement while electron-withdrawing substituents act in opposite direction and decelerate the reaction. The amount of acceleration or deceleration depends on substituent position. In addition to mono-substituted compounds, di-substituted compounds have been also investigated. All of the calculations have been carried out in gas phase.