{"title":"氯氮平致致糖尿病酮症酸中毒1例","authors":"E. Romney, Vinay J. Nagaraj, Amie Kafer","doi":"10.4137/CMPsy.S30532","DOIUrl":null,"url":null,"abstract":"Introduction Clozapine, a second generation medication, has become the atypical antipsychotic drug of choice for refractory or treatment-resistant schizophrenia. In addition to the high risk of agranulocytosis and seizures, clozapine treatment is increasingly associated with significant metabolic effects, such as hyperglycemia, central weight gain and adiposity, hypertriglyceridemia, and elevated low-density lipoprotein cholesterol. A potentially life-threatening complication of altered metabolism is diabetic ketoacidosis (DKA). This report details a case of fatal DKA in a schizophrenic patient undergoing treatment with clozapine. Case Description An African–American male in his 20s with a medical history significant for schizophrenia was presented to the psychiatric inpatient ward with severe paranoid thoughts and aggressive behavior. After trials of risperidone, olanzapine, and haloperidol—all of which failed to adequately control his psychotic symptoms—clozapine titration was initiated and he showed significant improvement. Weight gain was observed throughout hospitalization, but all blood and urine test results showed no metabolic or hematological abnormalities. The patient was discharged for outpatient treatment on clozapine (125 mg morning and 325 mg evening) along with divalproex sodium and metoprolol. Six days post-discharge, the patient died. A medical autopsy later ruled that the death was due to DKA without any evidence of contributory injuries or natural disease. Results and Conclusion Significant increase in body mass index from 28.7 to 33.5 was observed during hospitalization. The blood glucose level, measured after his death, was found to be 500 mg/dL. Altered metabolism due to clozapine can lead to dyslipidemia-mediated-pancreatic-beta-cell damage, decreased insulin secretion as well as insulin resistance. In DKA, low levels of insulin lead to an increased release of free fatty acids from adipose tissue. Acetyl coenzyme A (CoA), derived from the breakdown of free fatty acids, is metabolized by the Kreb's cycle. In hepatocytes, excess acetyl-CoA is converted into ketone bodies (acetoacetate and β-hydroxybutyrate) and released into circulation. Ketone bodies have a low pKa value and their high serum concentrations lead to DKA. In this patient, DKA was most probably clozapine induced and had fatal consequences. Thus, recognizing potential risk factors, providing patient education, and increasing monitoring of patients on clozapine and other atypical antipsychotics are critical to prevent the life-threatening effects of DKA.","PeriodicalId":10437,"journal":{"name":"Clinical Medicine Insights: Psychiatry","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Clinical Case of Clozapine-Induced Fatal Diabetic Ketoacidosis\",\"authors\":\"E. Romney, Vinay J. Nagaraj, Amie Kafer\",\"doi\":\"10.4137/CMPsy.S30532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction Clozapine, a second generation medication, has become the atypical antipsychotic drug of choice for refractory or treatment-resistant schizophrenia. In addition to the high risk of agranulocytosis and seizures, clozapine treatment is increasingly associated with significant metabolic effects, such as hyperglycemia, central weight gain and adiposity, hypertriglyceridemia, and elevated low-density lipoprotein cholesterol. A potentially life-threatening complication of altered metabolism is diabetic ketoacidosis (DKA). This report details a case of fatal DKA in a schizophrenic patient undergoing treatment with clozapine. Case Description An African–American male in his 20s with a medical history significant for schizophrenia was presented to the psychiatric inpatient ward with severe paranoid thoughts and aggressive behavior. After trials of risperidone, olanzapine, and haloperidol—all of which failed to adequately control his psychotic symptoms—clozapine titration was initiated and he showed significant improvement. Weight gain was observed throughout hospitalization, but all blood and urine test results showed no metabolic or hematological abnormalities. The patient was discharged for outpatient treatment on clozapine (125 mg morning and 325 mg evening) along with divalproex sodium and metoprolol. Six days post-discharge, the patient died. A medical autopsy later ruled that the death was due to DKA without any evidence of contributory injuries or natural disease. Results and Conclusion Significant increase in body mass index from 28.7 to 33.5 was observed during hospitalization. The blood glucose level, measured after his death, was found to be 500 mg/dL. Altered metabolism due to clozapine can lead to dyslipidemia-mediated-pancreatic-beta-cell damage, decreased insulin secretion as well as insulin resistance. In DKA, low levels of insulin lead to an increased release of free fatty acids from adipose tissue. Acetyl coenzyme A (CoA), derived from the breakdown of free fatty acids, is metabolized by the Kreb's cycle. In hepatocytes, excess acetyl-CoA is converted into ketone bodies (acetoacetate and β-hydroxybutyrate) and released into circulation. Ketone bodies have a low pKa value and their high serum concentrations lead to DKA. In this patient, DKA was most probably clozapine induced and had fatal consequences. Thus, recognizing potential risk factors, providing patient education, and increasing monitoring of patients on clozapine and other atypical antipsychotics are critical to prevent the life-threatening effects of DKA.\",\"PeriodicalId\":10437,\"journal\":{\"name\":\"Clinical Medicine Insights: Psychiatry\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Medicine Insights: Psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/CMPsy.S30532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Medicine Insights: Psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/CMPsy.S30532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Clinical Case of Clozapine-Induced Fatal Diabetic Ketoacidosis
Introduction Clozapine, a second generation medication, has become the atypical antipsychotic drug of choice for refractory or treatment-resistant schizophrenia. In addition to the high risk of agranulocytosis and seizures, clozapine treatment is increasingly associated with significant metabolic effects, such as hyperglycemia, central weight gain and adiposity, hypertriglyceridemia, and elevated low-density lipoprotein cholesterol. A potentially life-threatening complication of altered metabolism is diabetic ketoacidosis (DKA). This report details a case of fatal DKA in a schizophrenic patient undergoing treatment with clozapine. Case Description An African–American male in his 20s with a medical history significant for schizophrenia was presented to the psychiatric inpatient ward with severe paranoid thoughts and aggressive behavior. After trials of risperidone, olanzapine, and haloperidol—all of which failed to adequately control his psychotic symptoms—clozapine titration was initiated and he showed significant improvement. Weight gain was observed throughout hospitalization, but all blood and urine test results showed no metabolic or hematological abnormalities. The patient was discharged for outpatient treatment on clozapine (125 mg morning and 325 mg evening) along with divalproex sodium and metoprolol. Six days post-discharge, the patient died. A medical autopsy later ruled that the death was due to DKA without any evidence of contributory injuries or natural disease. Results and Conclusion Significant increase in body mass index from 28.7 to 33.5 was observed during hospitalization. The blood glucose level, measured after his death, was found to be 500 mg/dL. Altered metabolism due to clozapine can lead to dyslipidemia-mediated-pancreatic-beta-cell damage, decreased insulin secretion as well as insulin resistance. In DKA, low levels of insulin lead to an increased release of free fatty acids from adipose tissue. Acetyl coenzyme A (CoA), derived from the breakdown of free fatty acids, is metabolized by the Kreb's cycle. In hepatocytes, excess acetyl-CoA is converted into ketone bodies (acetoacetate and β-hydroxybutyrate) and released into circulation. Ketone bodies have a low pKa value and their high serum concentrations lead to DKA. In this patient, DKA was most probably clozapine induced and had fatal consequences. Thus, recognizing potential risk factors, providing patient education, and increasing monitoring of patients on clozapine and other atypical antipsychotics are critical to prevent the life-threatening effects of DKA.