{"title":"应用中等电场改善蓝莓果实及其副产品中果汁和活性物质的提取","authors":"G. Pataro, G. Ferrari","doi":"10.3303/CET2187027","DOIUrl":null,"url":null,"abstract":"The influence of Moderate Electric Field (MEF) pre-treatment of blueberry fruits on the yield and quality of the expressed juice as well as the subsequent extraction yield of bioactive compounds from berry by-products (press cake left after MEF-assisted pressing), was investigated. Thermal MEF pre-treatments were performed under different combinations of electric field strengths (E=18-55 V.cm-1) and final heating temperature (Tf=25-80 °C) before applying a pressure of 1.32 bar for 5 min. For the sake of comparison, the effect of conventional heating (CH) (Tf=25-80 °C), was also investigated. Results showed that the Zp values increased with increasing the field strength and heating temperature. However, at the same final heating temperature, MEF treatment achieved higher Zp values (up to 0.66) than CH (up to 0.45). Coherently, thermal MEF pre-treatment (36.4 V.cm-1, 60 °C) significantly increased the juice yield, which also showed higher TPC, TAC, and AA, as compared with either untreated or CH-treated samples. Moreover, compared to the untreated and CH-treated samples, higher amounts of total phenolics, total anthocyanins and antioxidant activity were detected in the press cake extracts. These results were explained by the combined non-thermal and thermal effect of MEF on the cell disintegration and extraction efficiency.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"91 1","pages":"157-162"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Extraction of Juice and Bioactive Compounds from Blueberry Fruits and Their By-products by Application of Moderate Electric Field (mef)\",\"authors\":\"G. Pataro, G. Ferrari\",\"doi\":\"10.3303/CET2187027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of Moderate Electric Field (MEF) pre-treatment of blueberry fruits on the yield and quality of the expressed juice as well as the subsequent extraction yield of bioactive compounds from berry by-products (press cake left after MEF-assisted pressing), was investigated. Thermal MEF pre-treatments were performed under different combinations of electric field strengths (E=18-55 V.cm-1) and final heating temperature (Tf=25-80 °C) before applying a pressure of 1.32 bar for 5 min. For the sake of comparison, the effect of conventional heating (CH) (Tf=25-80 °C), was also investigated. Results showed that the Zp values increased with increasing the field strength and heating temperature. However, at the same final heating temperature, MEF treatment achieved higher Zp values (up to 0.66) than CH (up to 0.45). Coherently, thermal MEF pre-treatment (36.4 V.cm-1, 60 °C) significantly increased the juice yield, which also showed higher TPC, TAC, and AA, as compared with either untreated or CH-treated samples. Moreover, compared to the untreated and CH-treated samples, higher amounts of total phenolics, total anthocyanins and antioxidant activity were detected in the press cake extracts. These results were explained by the combined non-thermal and thermal effect of MEF on the cell disintegration and extraction efficiency.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"91 1\",\"pages\":\"157-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2187027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2187027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Improving the Extraction of Juice and Bioactive Compounds from Blueberry Fruits and Their By-products by Application of Moderate Electric Field (mef)
The influence of Moderate Electric Field (MEF) pre-treatment of blueberry fruits on the yield and quality of the expressed juice as well as the subsequent extraction yield of bioactive compounds from berry by-products (press cake left after MEF-assisted pressing), was investigated. Thermal MEF pre-treatments were performed under different combinations of electric field strengths (E=18-55 V.cm-1) and final heating temperature (Tf=25-80 °C) before applying a pressure of 1.32 bar for 5 min. For the sake of comparison, the effect of conventional heating (CH) (Tf=25-80 °C), was also investigated. Results showed that the Zp values increased with increasing the field strength and heating temperature. However, at the same final heating temperature, MEF treatment achieved higher Zp values (up to 0.66) than CH (up to 0.45). Coherently, thermal MEF pre-treatment (36.4 V.cm-1, 60 °C) significantly increased the juice yield, which also showed higher TPC, TAC, and AA, as compared with either untreated or CH-treated samples. Moreover, compared to the untreated and CH-treated samples, higher amounts of total phenolics, total anthocyanins and antioxidant activity were detected in the press cake extracts. These results were explained by the combined non-thermal and thermal effect of MEF on the cell disintegration and extraction efficiency.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering