{"title":"带离群值的随机块模型中群落数量的估计","authors":"Jingsong Xiao, Fei Ye, Weidong Ma, Ying Yang","doi":"10.1093/comnet/cnac042","DOIUrl":null,"url":null,"abstract":"\n The stochastic block model (SBM) is a popular model for community detecting problems. Many community detecting approaches have been proposed, and most of them assume that the number of communities is given previously. However, in practice, the number of communities is often unknown. Plenty of approaches were proposed to estimate the number of communities, but most of them were computationally intensive. Moreover, when outliers exist, there are no approaches to consistently estimate the number of communities. In this article, we propose a fast method based on the eigenvalues of the regularized and normalized adjacency matrix to estimate the number of communities under the SBM with outliers. We show that our method can consistently estimate the number of communities when outliers exist. Moreover, we extend our method to the degree-corrected SBM. We show that our approach is comparable to the other existing approaches in simulations. We also illustrate our approach on four real-world networks.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"7 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the number of communities in the stochastic block model with outliers\",\"authors\":\"Jingsong Xiao, Fei Ye, Weidong Ma, Ying Yang\",\"doi\":\"10.1093/comnet/cnac042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The stochastic block model (SBM) is a popular model for community detecting problems. Many community detecting approaches have been proposed, and most of them assume that the number of communities is given previously. However, in practice, the number of communities is often unknown. Plenty of approaches were proposed to estimate the number of communities, but most of them were computationally intensive. Moreover, when outliers exist, there are no approaches to consistently estimate the number of communities. In this article, we propose a fast method based on the eigenvalues of the regularized and normalized adjacency matrix to estimate the number of communities under the SBM with outliers. We show that our method can consistently estimate the number of communities when outliers exist. Moreover, we extend our method to the degree-corrected SBM. We show that our approach is comparable to the other existing approaches in simulations. We also illustrate our approach on four real-world networks.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnac042\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnac042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Estimating the number of communities in the stochastic block model with outliers
The stochastic block model (SBM) is a popular model for community detecting problems. Many community detecting approaches have been proposed, and most of them assume that the number of communities is given previously. However, in practice, the number of communities is often unknown. Plenty of approaches were proposed to estimate the number of communities, but most of them were computationally intensive. Moreover, when outliers exist, there are no approaches to consistently estimate the number of communities. In this article, we propose a fast method based on the eigenvalues of the regularized and normalized adjacency matrix to estimate the number of communities under the SBM with outliers. We show that our method can consistently estimate the number of communities when outliers exist. Moreover, we extend our method to the degree-corrected SBM. We show that our approach is comparable to the other existing approaches in simulations. We also illustrate our approach on four real-world networks.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network