离散时间鲁棒LMI磁极安置磁悬浮

M. Hypiusová, D. Rosinová
{"title":"离散时间鲁棒LMI磁极安置磁悬浮","authors":"M. Hypiusová, D. Rosinová","doi":"10.1109/CYBERI.2018.8337565","DOIUrl":null,"url":null,"abstract":"This paper studies the robust discrete-time pole-placement state feedback controller design in the LMI framework. The inner ellipse is used to approximate originally non-convex discrete-time closed loop pole region respective to the prescribed damping factor. The resulting LMI conditions use parameter dependent Lyapunov function to reduce conservatism in robust controller design. Contribution of this paper is in the application of this procedure on the case study — unstable Magnetic Levitation System, analysis of the results and comparison with standard robust stabilizing controller design.","PeriodicalId":6534,"journal":{"name":"2018 Cybernetics & Informatics (K&I)","volume":"72 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Discrete-time robust LMI pole placement for magnetic levitation\",\"authors\":\"M. Hypiusová, D. Rosinová\",\"doi\":\"10.1109/CYBERI.2018.8337565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the robust discrete-time pole-placement state feedback controller design in the LMI framework. The inner ellipse is used to approximate originally non-convex discrete-time closed loop pole region respective to the prescribed damping factor. The resulting LMI conditions use parameter dependent Lyapunov function to reduce conservatism in robust controller design. Contribution of this paper is in the application of this procedure on the case study — unstable Magnetic Levitation System, analysis of the results and comparison with standard robust stabilizing controller design.\",\"PeriodicalId\":6534,\"journal\":{\"name\":\"2018 Cybernetics & Informatics (K&I)\",\"volume\":\"72 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Cybernetics & Informatics (K&I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERI.2018.8337565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Cybernetics & Informatics (K&I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERI.2018.8337565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了LMI框架下的鲁棒离散极点状态反馈控制器设计。利用内椭圆来近似原非凸离散闭环极点区域对应于规定的阻尼系数。所得到的LMI条件使用参数相关的李雅普诺夫函数来降低鲁棒控制器设计中的保守性。本文的贡献在于将该方法应用于不稳定磁悬浮系统的实例研究,分析了结果,并与标准鲁棒稳定控制器设计进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-time robust LMI pole placement for magnetic levitation
This paper studies the robust discrete-time pole-placement state feedback controller design in the LMI framework. The inner ellipse is used to approximate originally non-convex discrete-time closed loop pole region respective to the prescribed damping factor. The resulting LMI conditions use parameter dependent Lyapunov function to reduce conservatism in robust controller design. Contribution of this paper is in the application of this procedure on the case study — unstable Magnetic Levitation System, analysis of the results and comparison with standard robust stabilizing controller design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信