{"title":"离散时间鲁棒LMI磁极安置磁悬浮","authors":"M. Hypiusová, D. Rosinová","doi":"10.1109/CYBERI.2018.8337565","DOIUrl":null,"url":null,"abstract":"This paper studies the robust discrete-time pole-placement state feedback controller design in the LMI framework. The inner ellipse is used to approximate originally non-convex discrete-time closed loop pole region respective to the prescribed damping factor. The resulting LMI conditions use parameter dependent Lyapunov function to reduce conservatism in robust controller design. Contribution of this paper is in the application of this procedure on the case study — unstable Magnetic Levitation System, analysis of the results and comparison with standard robust stabilizing controller design.","PeriodicalId":6534,"journal":{"name":"2018 Cybernetics & Informatics (K&I)","volume":"72 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Discrete-time robust LMI pole placement for magnetic levitation\",\"authors\":\"M. Hypiusová, D. Rosinová\",\"doi\":\"10.1109/CYBERI.2018.8337565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the robust discrete-time pole-placement state feedback controller design in the LMI framework. The inner ellipse is used to approximate originally non-convex discrete-time closed loop pole region respective to the prescribed damping factor. The resulting LMI conditions use parameter dependent Lyapunov function to reduce conservatism in robust controller design. Contribution of this paper is in the application of this procedure on the case study — unstable Magnetic Levitation System, analysis of the results and comparison with standard robust stabilizing controller design.\",\"PeriodicalId\":6534,\"journal\":{\"name\":\"2018 Cybernetics & Informatics (K&I)\",\"volume\":\"72 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Cybernetics & Informatics (K&I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERI.2018.8337565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Cybernetics & Informatics (K&I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERI.2018.8337565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete-time robust LMI pole placement for magnetic levitation
This paper studies the robust discrete-time pole-placement state feedback controller design in the LMI framework. The inner ellipse is used to approximate originally non-convex discrete-time closed loop pole region respective to the prescribed damping factor. The resulting LMI conditions use parameter dependent Lyapunov function to reduce conservatism in robust controller design. Contribution of this paper is in the application of this procedure on the case study — unstable Magnetic Levitation System, analysis of the results and comparison with standard robust stabilizing controller design.