在亚线性时间内精确和最优地采样边缘

T. Eden, Shyam Narayanan, Jakub Tvetek
{"title":"在亚线性时间内精确和最优地采样边缘","authors":"T. Eden, Shyam Narayanan, Jakub Tvetek","doi":"10.48550/arXiv.2211.04981","DOIUrl":null,"url":null,"abstract":"Sampling edges from a graph in sublinear time is a fundamental problem and a powerful subroutine for designing sublinear-time algorithms. Suppose we have access to the vertices of the graph and know a constant-factor approximation to the number of edges. An algorithm for pointwise $\\varepsilon$-approximate edge sampling with complexity $O(n/\\sqrt{\\varepsilon m})$ has been given by Eden and Rosenbaum [SOSA 2018]. This has been later improved by T\\v{e}tek and Thorup [STOC 2022] to $O(n \\log(\\varepsilon^{-1})/\\sqrt{m})$. At the same time, $\\Omega(n/\\sqrt{m})$ time is necessary. We close the problem, by giving an algorithm with complexity $O(n/\\sqrt{m})$ for the task of sampling an edge exactly uniformly.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"24 1","pages":"253-260"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling an Edge in Sublinear Time Exactly and Optimally\",\"authors\":\"T. Eden, Shyam Narayanan, Jakub Tvetek\",\"doi\":\"10.48550/arXiv.2211.04981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sampling edges from a graph in sublinear time is a fundamental problem and a powerful subroutine for designing sublinear-time algorithms. Suppose we have access to the vertices of the graph and know a constant-factor approximation to the number of edges. An algorithm for pointwise $\\\\varepsilon$-approximate edge sampling with complexity $O(n/\\\\sqrt{\\\\varepsilon m})$ has been given by Eden and Rosenbaum [SOSA 2018]. This has been later improved by T\\\\v{e}tek and Thorup [STOC 2022] to $O(n \\\\log(\\\\varepsilon^{-1})/\\\\sqrt{m})$. At the same time, $\\\\Omega(n/\\\\sqrt{m})$ time is necessary. We close the problem, by giving an algorithm with complexity $O(n/\\\\sqrt{m})$ for the task of sampling an edge exactly uniformly.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"24 1\",\"pages\":\"253-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.04981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.04981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在亚线性时间内对图进行边采样是设计亚线性时间算法的一个基本问题,也是一个强大的子程序。假设我们可以访问图的顶点,并且知道边数的常数因子近似值。Eden和Rosenbaum [SOSA 2018]给出了一种复杂度为$O(n/\sqrt{\varepsilon m})$的逐点$\varepsilon$ -近似边缘采样算法。这后来由T \v{e} tek和Thorup [STOC 2022]改进为$O(n \log(\varepsilon^{-1})/\sqrt{m})$。同时,$\Omega(n/\sqrt{m})$时间是必要的。我们通过给出一个复杂度为$O(n/\sqrt{m})$的算法来完成精确均匀采样边缘的任务,从而解决了这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling an Edge in Sublinear Time Exactly and Optimally
Sampling edges from a graph in sublinear time is a fundamental problem and a powerful subroutine for designing sublinear-time algorithms. Suppose we have access to the vertices of the graph and know a constant-factor approximation to the number of edges. An algorithm for pointwise $\varepsilon$-approximate edge sampling with complexity $O(n/\sqrt{\varepsilon m})$ has been given by Eden and Rosenbaum [SOSA 2018]. This has been later improved by T\v{e}tek and Thorup [STOC 2022] to $O(n \log(\varepsilon^{-1})/\sqrt{m})$. At the same time, $\Omega(n/\sqrt{m})$ time is necessary. We close the problem, by giving an algorithm with complexity $O(n/\sqrt{m})$ for the task of sampling an edge exactly uniformly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信