基于统计假设检验的低比特率编码图像分割

Seoung-Jun Oh, Byungsun Bang, E. S. Kim
{"title":"基于统计假设检验的低比特率编码图像分割","authors":"Seoung-Jun Oh, Byungsun Bang, E. S. Kim","doi":"10.1109/APCAS.1996.569238","DOIUrl":null,"url":null,"abstract":"We proposed a new image segmentation algorithm, called \"SC-SAM\", which checks the homogeneity of an image block using a statistical hypothesis test. SC-SAM consists of five processes: a split process, edge region adjustment, a merge process, postprocessing, and region representation. ShortCut test is applied to split a block as well as to merge two homogeneous regions into a region. A threshold value for the region homogeneity test can be chosen theoretically. SC-SAM can provide relatively very low computational complexity as well as keep the quality of a reconstructed image. Furthermore, SC-SAM removes the necessity of a control map used for refining the output in conventional algorithms. SC-SAM can considerably reduce the number of merged regions and computational time, while retaining the visual quality of the reconstructed image.","PeriodicalId":20507,"journal":{"name":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","volume":"20 1","pages":"137-140"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical hypothesis test-based image segmentation for low-bit rate coding\",\"authors\":\"Seoung-Jun Oh, Byungsun Bang, E. S. Kim\",\"doi\":\"10.1109/APCAS.1996.569238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a new image segmentation algorithm, called \\\"SC-SAM\\\", which checks the homogeneity of an image block using a statistical hypothesis test. SC-SAM consists of five processes: a split process, edge region adjustment, a merge process, postprocessing, and region representation. ShortCut test is applied to split a block as well as to merge two homogeneous regions into a region. A threshold value for the region homogeneity test can be chosen theoretically. SC-SAM can provide relatively very low computational complexity as well as keep the quality of a reconstructed image. Furthermore, SC-SAM removes the necessity of a control map used for refining the output in conventional algorithms. SC-SAM can considerably reduce the number of merged regions and computational time, while retaining the visual quality of the reconstructed image.\",\"PeriodicalId\":20507,\"journal\":{\"name\":\"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems\",\"volume\":\"20 1\",\"pages\":\"137-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAS.1996.569238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAS.1996.569238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的图像分割算法,称为SC-SAM,它使用统计假设检验来检查图像块的同质性。SC-SAM包括五个过程:分割过程、边缘区域调整过程、合并过程、后处理过程和区域表示过程。快捷测试可以用于分割块,也可以用于将两个同质区域合并为一个区域。理论上可以选择区域均匀性检验的阈值。SC-SAM可以提供相对非常低的计算复杂度,并保持重建图像的质量。此外,SC-SAM消除了在传统算法中用于精炼输出的控制映射的必要性。SC-SAM在保留重建图像的视觉质量的同时,大大减少了合并区域的数量和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical hypothesis test-based image segmentation for low-bit rate coding
We proposed a new image segmentation algorithm, called "SC-SAM", which checks the homogeneity of an image block using a statistical hypothesis test. SC-SAM consists of five processes: a split process, edge region adjustment, a merge process, postprocessing, and region representation. ShortCut test is applied to split a block as well as to merge two homogeneous regions into a region. A threshold value for the region homogeneity test can be chosen theoretically. SC-SAM can provide relatively very low computational complexity as well as keep the quality of a reconstructed image. Furthermore, SC-SAM removes the necessity of a control map used for refining the output in conventional algorithms. SC-SAM can considerably reduce the number of merged regions and computational time, while retaining the visual quality of the reconstructed image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信