深度卷积神经网络在乳腺造影中的应用综述

Dina Abdelhafiz, S. Nabavi, Reda Ammar, Clifford Yang
{"title":"深度卷积神经网络在乳腺造影中的应用综述","authors":"Dina Abdelhafiz, S. Nabavi, Reda Ammar, Clifford Yang","doi":"10.1109/ICCABS.2017.8114310","DOIUrl":null,"url":null,"abstract":"The limitations of traditional Computer Aided Detection (CAD) systems for mammography, the extreme importance of early detection of breast cancer and the high impact of the false diagnosis of patients lead to investigating Deep Learning methods (DL) for mammograms. Deep Learning, in particular, Convolutional Neural Networks (CNNs) have been recently used for object localization and detection, risk assessment, and classification tasks in mammogram images. CNNs help radiologists provide more accurate diagnosis by delivering precise quantitative analysis of suspicious lesions in short time. This survey reviews the strengths and limitations of major CNNs applications in analyzing mammogram images. It summarizes 51 contributions on applying CNNs on various tasks in mammography. Moreover, it discusses the best practices done using CNN methods and suggesting directions for further improvement in medical images and in particular mammogram images.","PeriodicalId":89933,"journal":{"name":"IEEE ... International Conference on Computational Advances in Bio and Medical Sciences : [proceedings]. IEEE International Conference on Computational Advances in Bio and Medical Sciences","volume":"58 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Survey on deep convolutional neural networks in mammography\",\"authors\":\"Dina Abdelhafiz, S. Nabavi, Reda Ammar, Clifford Yang\",\"doi\":\"10.1109/ICCABS.2017.8114310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limitations of traditional Computer Aided Detection (CAD) systems for mammography, the extreme importance of early detection of breast cancer and the high impact of the false diagnosis of patients lead to investigating Deep Learning methods (DL) for mammograms. Deep Learning, in particular, Convolutional Neural Networks (CNNs) have been recently used for object localization and detection, risk assessment, and classification tasks in mammogram images. CNNs help radiologists provide more accurate diagnosis by delivering precise quantitative analysis of suspicious lesions in short time. This survey reviews the strengths and limitations of major CNNs applications in analyzing mammogram images. It summarizes 51 contributions on applying CNNs on various tasks in mammography. Moreover, it discusses the best practices done using CNN methods and suggesting directions for further improvement in medical images and in particular mammogram images.\",\"PeriodicalId\":89933,\"journal\":{\"name\":\"IEEE ... International Conference on Computational Advances in Bio and Medical Sciences : [proceedings]. IEEE International Conference on Computational Advances in Bio and Medical Sciences\",\"volume\":\"58 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Computational Advances in Bio and Medical Sciences : [proceedings]. IEEE International Conference on Computational Advances in Bio and Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCABS.2017.8114310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Computational Advances in Bio and Medical Sciences : [proceedings]. IEEE International Conference on Computational Advances in Bio and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCABS.2017.8114310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

传统的计算机辅助检测(CAD)系统用于乳房x光检查的局限性,乳腺癌早期检测的极端重要性以及患者错误诊断的高影响导致研究深度学习方法(DL)用于乳房x光检查。深度学习,特别是卷积神经网络(cnn)最近被用于乳房x光图像中的目标定位和检测、风险评估和分类任务。cnn通过在短时间内对可疑病变进行精确的定量分析,帮助放射科医生提供更准确的诊断。本调查回顾了主要的cnn应用在分析乳房x光图像的优势和局限性。它总结了51个贡献应用cnn在乳房x线摄影的各种任务。此外,它还讨论了使用CNN方法完成的最佳实践,并提出了进一步改进医学图像,特别是乳房x线照片图像的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Survey on deep convolutional neural networks in mammography
The limitations of traditional Computer Aided Detection (CAD) systems for mammography, the extreme importance of early detection of breast cancer and the high impact of the false diagnosis of patients lead to investigating Deep Learning methods (DL) for mammograms. Deep Learning, in particular, Convolutional Neural Networks (CNNs) have been recently used for object localization and detection, risk assessment, and classification tasks in mammogram images. CNNs help radiologists provide more accurate diagnosis by delivering precise quantitative analysis of suspicious lesions in short time. This survey reviews the strengths and limitations of major CNNs applications in analyzing mammogram images. It summarizes 51 contributions on applying CNNs on various tasks in mammography. Moreover, it discusses the best practices done using CNN methods and suggesting directions for further improvement in medical images and in particular mammogram images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信