B. Alam, A. Ferraro, A. d’Alessandro, R. Caputo, R. Asquini
{"title":"用近似散射理论研究波导馈入等离子体纳米阵列的光学特性","authors":"B. Alam, A. Ferraro, A. d’Alessandro, R. Caputo, R. Asquini","doi":"10.1109/NUSOD52207.2021.9541521","DOIUrl":null,"url":null,"abstract":"We analyze the optical scattering properties of an array of Au nano-cylinders fabricated upon an ion-exchanged waveguide. The integrated systems is considered for fluoroscopy and Raman spectroscopy. Absorption, scattering and extinction have been calculated through a combination of Finite Difference Time Domain (FDTD) method and scattering theory. While a portion of the excitation signal interacts with the array, the remaining part flows through the waveguide, enabling areas within the simulation box that complicate the calculation through standard procedures. Our analysis includes adjustments and approximations addressing this issue and making full use of computational capabilities of FDTD.","PeriodicalId":6780,"journal":{"name":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"86 1","pages":"23-24"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical properties of a waveguide-fed plasmonic nano-array through approximated scattering theory\",\"authors\":\"B. Alam, A. Ferraro, A. d’Alessandro, R. Caputo, R. Asquini\",\"doi\":\"10.1109/NUSOD52207.2021.9541521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the optical scattering properties of an array of Au nano-cylinders fabricated upon an ion-exchanged waveguide. The integrated systems is considered for fluoroscopy and Raman spectroscopy. Absorption, scattering and extinction have been calculated through a combination of Finite Difference Time Domain (FDTD) method and scattering theory. While a portion of the excitation signal interacts with the array, the remaining part flows through the waveguide, enabling areas within the simulation box that complicate the calculation through standard procedures. Our analysis includes adjustments and approximations addressing this issue and making full use of computational capabilities of FDTD.\",\"PeriodicalId\":6780,\"journal\":{\"name\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"86 1\",\"pages\":\"23-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD52207.2021.9541521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD52207.2021.9541521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical properties of a waveguide-fed plasmonic nano-array through approximated scattering theory
We analyze the optical scattering properties of an array of Au nano-cylinders fabricated upon an ion-exchanged waveguide. The integrated systems is considered for fluoroscopy and Raman spectroscopy. Absorption, scattering and extinction have been calculated through a combination of Finite Difference Time Domain (FDTD) method and scattering theory. While a portion of the excitation signal interacts with the array, the remaining part flows through the waveguide, enabling areas within the simulation box that complicate the calculation through standard procedures. Our analysis includes adjustments and approximations addressing this issue and making full use of computational capabilities of FDTD.