{"title":"提高盆栽石竹(Dianthus caryophyllus L. Clove Pink)植株寿命及相关代谢事件","authors":"M. Karimi, M. H. Asil, H. Zakizadeh","doi":"10.1590/S1677-04202012000400003","DOIUrl":null,"url":null,"abstract":"The effects of aminooxyacetic acid, benzyladenine, and 1-methylcyclopropene treatments on the post-production flower quality of potted carnation plants (Dianthus caryophyllus L. Clove Pink) were investigated considering ethylene production and antioxidant metabolism. Maximum plant longevity (17 days) was obtained using 70 ppb of 1-methylcyclopropene. As compared to control plants, ethylene production was significantly decreased by aminooxyacetic acid at concentrations over 100 mg L-1, benzyladenine at 20 or 30 mg L-1, and 1-methylcyclopropene at 70 and 140 ppb. A significant increase in 1-aminocyclopropane-1-carboxylic-acid concentration was observed in 1-methylcyclopropene treated plants compared with the control ones. On the other hand, decline in 1-aminocyclopropane-1-carboxylic-acid concentration was observed after using 100 or 150 mg L-1 of aminooxyacetic acid. Use of 1-methylcyclopropene (70 or 140 ppb), aminooxyacetic acid (100 or 150 mg L-1), and benzyladenine (20 or 30 mg L-1) significantly decreased H2O2 concentration and superoxide radical when compared with the untreated control. Significant increases in activities of superoxide dismutase, catalase, and peroxidase were noticed when plants were treated with 70 ppb 1-methylcyclopropene. In conclusion, aminooxyacetic acid, benzyladenine (at high concentrations), and 1-methylcyclopropene treatments can be suitable candidates for extending plant longevity, maintaining the visual quality, and reducing the loss of flower anthocyanin.","PeriodicalId":9278,"journal":{"name":"Brazilian Journal of Plant Physiology","volume":"78 1","pages":"247-252"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Increasing plant longevity and associated metabolic events in potted carnation (Dianthus caryophyllus L. Clove Pink)\",\"authors\":\"M. Karimi, M. H. Asil, H. Zakizadeh\",\"doi\":\"10.1590/S1677-04202012000400003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of aminooxyacetic acid, benzyladenine, and 1-methylcyclopropene treatments on the post-production flower quality of potted carnation plants (Dianthus caryophyllus L. Clove Pink) were investigated considering ethylene production and antioxidant metabolism. Maximum plant longevity (17 days) was obtained using 70 ppb of 1-methylcyclopropene. As compared to control plants, ethylene production was significantly decreased by aminooxyacetic acid at concentrations over 100 mg L-1, benzyladenine at 20 or 30 mg L-1, and 1-methylcyclopropene at 70 and 140 ppb. A significant increase in 1-aminocyclopropane-1-carboxylic-acid concentration was observed in 1-methylcyclopropene treated plants compared with the control ones. On the other hand, decline in 1-aminocyclopropane-1-carboxylic-acid concentration was observed after using 100 or 150 mg L-1 of aminooxyacetic acid. Use of 1-methylcyclopropene (70 or 140 ppb), aminooxyacetic acid (100 or 150 mg L-1), and benzyladenine (20 or 30 mg L-1) significantly decreased H2O2 concentration and superoxide radical when compared with the untreated control. Significant increases in activities of superoxide dismutase, catalase, and peroxidase were noticed when plants were treated with 70 ppb 1-methylcyclopropene. In conclusion, aminooxyacetic acid, benzyladenine (at high concentrations), and 1-methylcyclopropene treatments can be suitable candidates for extending plant longevity, maintaining the visual quality, and reducing the loss of flower anthocyanin.\",\"PeriodicalId\":9278,\"journal\":{\"name\":\"Brazilian Journal of Plant Physiology\",\"volume\":\"78 1\",\"pages\":\"247-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Plant Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/S1677-04202012000400003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Plant Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S1677-04202012000400003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increasing plant longevity and associated metabolic events in potted carnation (Dianthus caryophyllus L. Clove Pink)
The effects of aminooxyacetic acid, benzyladenine, and 1-methylcyclopropene treatments on the post-production flower quality of potted carnation plants (Dianthus caryophyllus L. Clove Pink) were investigated considering ethylene production and antioxidant metabolism. Maximum plant longevity (17 days) was obtained using 70 ppb of 1-methylcyclopropene. As compared to control plants, ethylene production was significantly decreased by aminooxyacetic acid at concentrations over 100 mg L-1, benzyladenine at 20 or 30 mg L-1, and 1-methylcyclopropene at 70 and 140 ppb. A significant increase in 1-aminocyclopropane-1-carboxylic-acid concentration was observed in 1-methylcyclopropene treated plants compared with the control ones. On the other hand, decline in 1-aminocyclopropane-1-carboxylic-acid concentration was observed after using 100 or 150 mg L-1 of aminooxyacetic acid. Use of 1-methylcyclopropene (70 or 140 ppb), aminooxyacetic acid (100 or 150 mg L-1), and benzyladenine (20 or 30 mg L-1) significantly decreased H2O2 concentration and superoxide radical when compared with the untreated control. Significant increases in activities of superoxide dismutase, catalase, and peroxidase were noticed when plants were treated with 70 ppb 1-methylcyclopropene. In conclusion, aminooxyacetic acid, benzyladenine (at high concentrations), and 1-methylcyclopropene treatments can be suitable candidates for extending plant longevity, maintaining the visual quality, and reducing the loss of flower anthocyanin.