在输入的几何变换下构造具有期望行为的神经结构

IF 0.1
V. Dudar, V. Semenov
{"title":"在输入的几何变换下构造具有期望行为的神经结构","authors":"V. Dudar, V. Semenov","doi":"10.17721/2706-9699.2020.1.03","DOIUrl":null,"url":null,"abstract":"We present a general method for analysis of convolutional layers under geometric transformations of the input that are linear with respect to pixel values. We also describe the algorithm for finding all possible types of behaviours of the output of convolutional layers under geometric transformations of the input. We also present a general method for construction of convolutional architectures with desired behaviour under geometric transformations of the input.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"35 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONSTRUCTION OF NEURAL ARCHITECTURES WITH DESIRED BEHAVIOUR UNDER GEOMETRIC TRANSFORMATIONS OF THE INPUT\",\"authors\":\"V. Dudar, V. Semenov\",\"doi\":\"10.17721/2706-9699.2020.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general method for analysis of convolutional layers under geometric transformations of the input that are linear with respect to pixel values. We also describe the algorithm for finding all possible types of behaviours of the output of convolutional layers under geometric transformations of the input. We also present a general method for construction of convolutional architectures with desired behaviour under geometric transformations of the input.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2020.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2020.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种通用的方法来分析卷积层的几何变换下的输入是线性的像素值。我们还描述了在输入的几何变换下寻找卷积层输出的所有可能类型的行为的算法。我们还提出了一种构造卷积结构的一般方法,该结构在输入的几何变换下具有期望的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONSTRUCTION OF NEURAL ARCHITECTURES WITH DESIRED BEHAVIOUR UNDER GEOMETRIC TRANSFORMATIONS OF THE INPUT
We present a general method for analysis of convolutional layers under geometric transformations of the input that are linear with respect to pixel values. We also describe the algorithm for finding all possible types of behaviours of the output of convolutional layers under geometric transformations of the input. We also present a general method for construction of convolutional architectures with desired behaviour under geometric transformations of the input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信