JupySim: Jupyter笔记本相似度搜索系统

Misato Horiuchi, Yuya Sasaki, Chuan Xiao, Makoto Onizuka
{"title":"JupySim: Jupyter笔记本相似度搜索系统","authors":"Misato Horiuchi, Yuya Sasaki, Chuan Xiao, Makoto Onizuka","doi":"10.48786/edbt.2022.49","DOIUrl":null,"url":null,"abstract":"Computational notebooks such as Jupyter notebooks are popular for machine learning and data analytic tasks. Numerous computational notebooks are available on the Web and reusable; however, searching for computational notebooks manually is a tedious task and so far there are no tools to search for computational notebooks effectively and efficiently. In this paper, we develop JupySim , which is a system for similarity search on Jupyter notebooks. In JupySim , users specify contents (codes, tabular data, libraries, and formats of outputs) in Jupyter notebooks as a query, and then retrieve top- 𝑘 Jupyter notebooks with the most similar contents to the given query. The characteristic of JupySim is that the queries and Jupyter notebooks are modeled by graphs for capturing the relationships between codes, data, and outputs. JupySim has intuitive user interfaces that the users can specify their targets of Jupyter notebooks easily. Our demonstration scenarios show that JupySim is effective to find Jupyter notebooks shared on Kaggle for data science.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"100 1","pages":"2:554-2:557"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"JupySim: Jupyter Notebook Similarity Search System\",\"authors\":\"Misato Horiuchi, Yuya Sasaki, Chuan Xiao, Makoto Onizuka\",\"doi\":\"10.48786/edbt.2022.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational notebooks such as Jupyter notebooks are popular for machine learning and data analytic tasks. Numerous computational notebooks are available on the Web and reusable; however, searching for computational notebooks manually is a tedious task and so far there are no tools to search for computational notebooks effectively and efficiently. In this paper, we develop JupySim , which is a system for similarity search on Jupyter notebooks. In JupySim , users specify contents (codes, tabular data, libraries, and formats of outputs) in Jupyter notebooks as a query, and then retrieve top- 𝑘 Jupyter notebooks with the most similar contents to the given query. The characteristic of JupySim is that the queries and Jupyter notebooks are modeled by graphs for capturing the relationships between codes, data, and outputs. JupySim has intuitive user interfaces that the users can specify their targets of Jupyter notebooks easily. Our demonstration scenarios show that JupySim is effective to find Jupyter notebooks shared on Kaggle for data science.\",\"PeriodicalId\":88813,\"journal\":{\"name\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"volume\":\"100 1\",\"pages\":\"2:554-2:557\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48786/edbt.2022.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2022.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

像Jupyter笔记本这样的计算笔记本在机器学习和数据分析任务中很受欢迎。网络上有许多可重复使用的计算笔记本;然而,手动搜索计算性笔记本是一项繁琐的任务,目前还没有有效和高效的搜索计算性笔记本的工具。在本文中,我们开发了JupySim,这是一个关于Jupyter笔记本的相似度搜索系统。在JupySim中,用户在Jupyter笔记本中指定内容(代码、表格数据、库和输出格式)作为查询,然后检索与给定查询内容最相似的top-𝑘Jupyter笔记本。JupySim的特点是查询和Jupyter笔记本是通过图形建模的,用于捕获代码、数据和输出之间的关系。JupySim具有直观的用户界面,用户可以很容易地指定他们的JupySim笔记本目标。我们的演示场景表明,JupySim可以有效地查找Kaggle上共享的用于数据科学的Jupyter笔记本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
JupySim: Jupyter Notebook Similarity Search System
Computational notebooks such as Jupyter notebooks are popular for machine learning and data analytic tasks. Numerous computational notebooks are available on the Web and reusable; however, searching for computational notebooks manually is a tedious task and so far there are no tools to search for computational notebooks effectively and efficiently. In this paper, we develop JupySim , which is a system for similarity search on Jupyter notebooks. In JupySim , users specify contents (codes, tabular data, libraries, and formats of outputs) in Jupyter notebooks as a query, and then retrieve top- 𝑘 Jupyter notebooks with the most similar contents to the given query. The characteristic of JupySim is that the queries and Jupyter notebooks are modeled by graphs for capturing the relationships between codes, data, and outputs. JupySim has intuitive user interfaces that the users can specify their targets of Jupyter notebooks easily. Our demonstration scenarios show that JupySim is effective to find Jupyter notebooks shared on Kaggle for data science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信