{"title":"基于Okamoto哈密顿公式的PIII τ函数序列在随机矩阵理论中的应用","authors":"D. Dai, P. Forrester, Shuai‐Xia Xu","doi":"10.1142/s2010326322500149","DOIUrl":null,"url":null,"abstract":"We consider the singular linear statistic of the Laguerre unitary ensemble (LUE) consisting of the sum of the reciprocal of the eigenvalues. It is observed that the exponential generating function for this statistic can be written as a Toeplitz determinant with entries given in terms of particular [Formula: see text] Bessel functions. Earlier studies have identified the same determinant, but with the [Formula: see text] Bessel functions replaced by [Formula: see text] Bessel functions, as relating to the hard edge scaling limit of a generalized gap probability for the LUE, in the case of non-negative integer Laguerre parameter. We show that the Toeplitz determinant formed from an arbitrary linear combination of these two Bessel functions occurs as a [Formula: see text]-function sequence in Okamoto’s Hamiltonian formulation of Painlevé III[Formula: see text], and consequently the logarithmic derivative of both Toeplitz determinants satisfies the same [Formula: see text]-form Painlevé III[Formula: see text] differential equation, giving an explanation of a fact which can be observed from earlier results. In addition, some insights into the relationship between this characterization of the generating function, and its characterization in the [Formula: see text] limit, both with the Laguerre parameter [Formula: see text] fixed, and with [Formula: see text] (this latter circumstance being relevant to an application to the distribution of the Wigner time delay statistic), are given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Applications in random matrix theory of a PIII’ τ-function sequence from Okamoto’s Hamiltonian formulation\",\"authors\":\"D. Dai, P. Forrester, Shuai‐Xia Xu\",\"doi\":\"10.1142/s2010326322500149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the singular linear statistic of the Laguerre unitary ensemble (LUE) consisting of the sum of the reciprocal of the eigenvalues. It is observed that the exponential generating function for this statistic can be written as a Toeplitz determinant with entries given in terms of particular [Formula: see text] Bessel functions. Earlier studies have identified the same determinant, but with the [Formula: see text] Bessel functions replaced by [Formula: see text] Bessel functions, as relating to the hard edge scaling limit of a generalized gap probability for the LUE, in the case of non-negative integer Laguerre parameter. We show that the Toeplitz determinant formed from an arbitrary linear combination of these two Bessel functions occurs as a [Formula: see text]-function sequence in Okamoto’s Hamiltonian formulation of Painlevé III[Formula: see text], and consequently the logarithmic derivative of both Toeplitz determinants satisfies the same [Formula: see text]-form Painlevé III[Formula: see text] differential equation, giving an explanation of a fact which can be observed from earlier results. In addition, some insights into the relationship between this characterization of the generating function, and its characterization in the [Formula: see text] limit, both with the Laguerre parameter [Formula: see text] fixed, and with [Formula: see text] (this latter circumstance being relevant to an application to the distribution of the Wigner time delay statistic), are given.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applications in random matrix theory of a PIII’ τ-function sequence from Okamoto’s Hamiltonian formulation
We consider the singular linear statistic of the Laguerre unitary ensemble (LUE) consisting of the sum of the reciprocal of the eigenvalues. It is observed that the exponential generating function for this statistic can be written as a Toeplitz determinant with entries given in terms of particular [Formula: see text] Bessel functions. Earlier studies have identified the same determinant, but with the [Formula: see text] Bessel functions replaced by [Formula: see text] Bessel functions, as relating to the hard edge scaling limit of a generalized gap probability for the LUE, in the case of non-negative integer Laguerre parameter. We show that the Toeplitz determinant formed from an arbitrary linear combination of these two Bessel functions occurs as a [Formula: see text]-function sequence in Okamoto’s Hamiltonian formulation of Painlevé III[Formula: see text], and consequently the logarithmic derivative of both Toeplitz determinants satisfies the same [Formula: see text]-form Painlevé III[Formula: see text] differential equation, giving an explanation of a fact which can be observed from earlier results. In addition, some insights into the relationship between this characterization of the generating function, and its characterization in the [Formula: see text] limit, both with the Laguerre parameter [Formula: see text] fixed, and with [Formula: see text] (this latter circumstance being relevant to an application to the distribution of the Wigner time delay statistic), are given.