基于Okamoto哈密顿公式的PIII τ函数序列在随机矩阵理论中的应用

Pub Date : 2019-09-17 DOI:10.1142/s2010326322500149
D. Dai, P. Forrester, Shuai‐Xia Xu
{"title":"基于Okamoto哈密顿公式的PIII τ函数序列在随机矩阵理论中的应用","authors":"D. Dai, P. Forrester, Shuai‐Xia Xu","doi":"10.1142/s2010326322500149","DOIUrl":null,"url":null,"abstract":"We consider the singular linear statistic of the Laguerre unitary ensemble (LUE) consisting of the sum of the reciprocal of the eigenvalues. It is observed that the exponential generating function for this statistic can be written as a Toeplitz determinant with entries given in terms of particular [Formula: see text] Bessel functions. Earlier studies have identified the same determinant, but with the [Formula: see text] Bessel functions replaced by [Formula: see text] Bessel functions, as relating to the hard edge scaling limit of a generalized gap probability for the LUE, in the case of non-negative integer Laguerre parameter. We show that the Toeplitz determinant formed from an arbitrary linear combination of these two Bessel functions occurs as a [Formula: see text]-function sequence in Okamoto’s Hamiltonian formulation of Painlevé III[Formula: see text], and consequently the logarithmic derivative of both Toeplitz determinants satisfies the same [Formula: see text]-form Painlevé III[Formula: see text] differential equation, giving an explanation of a fact which can be observed from earlier results. In addition, some insights into the relationship between this characterization of the generating function, and its characterization in the [Formula: see text] limit, both with the Laguerre parameter [Formula: see text] fixed, and with [Formula: see text] (this latter circumstance being relevant to an application to the distribution of the Wigner time delay statistic), are given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Applications in random matrix theory of a PIII’ τ-function sequence from Okamoto’s Hamiltonian formulation\",\"authors\":\"D. Dai, P. Forrester, Shuai‐Xia Xu\",\"doi\":\"10.1142/s2010326322500149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the singular linear statistic of the Laguerre unitary ensemble (LUE) consisting of the sum of the reciprocal of the eigenvalues. It is observed that the exponential generating function for this statistic can be written as a Toeplitz determinant with entries given in terms of particular [Formula: see text] Bessel functions. Earlier studies have identified the same determinant, but with the [Formula: see text] Bessel functions replaced by [Formula: see text] Bessel functions, as relating to the hard edge scaling limit of a generalized gap probability for the LUE, in the case of non-negative integer Laguerre parameter. We show that the Toeplitz determinant formed from an arbitrary linear combination of these two Bessel functions occurs as a [Formula: see text]-function sequence in Okamoto’s Hamiltonian formulation of Painlevé III[Formula: see text], and consequently the logarithmic derivative of both Toeplitz determinants satisfies the same [Formula: see text]-form Painlevé III[Formula: see text] differential equation, giving an explanation of a fact which can be observed from earlier results. In addition, some insights into the relationship between this characterization of the generating function, and its characterization in the [Formula: see text] limit, both with the Laguerre parameter [Formula: see text] fixed, and with [Formula: see text] (this latter circumstance being relevant to an application to the distribution of the Wigner time delay statistic), are given.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑由特征值的倒数和组成的拉盖尔酉系综(LUE)的奇异线性统计量。可以观察到,该统计量的指数生成函数可以写成Toeplitz行列式,其条目以特定的[公式:见文本]贝塞尔函数的形式给出。早期的研究已经确定了相同的行列式,但用[公式:见文]贝塞尔函数代替[公式:见文]贝塞尔函数,作为与LUE广义间隙概率的硬边缩放极限有关,在非负整数Laguerre参数的情况下。我们证明了由这两个贝塞尔函数的任意线性组合形成的Toeplitz行列式在Okamoto的painlev III的哈密顿公式[公式:见文]中作为[公式:见文]-函数序列出现,因此两个Toeplitz行列式的对数导数满足相同的[公式:见文]-形式painlev III[公式:见文]微分方程,给出了可以从早期结果中观察到的事实的解释。此外,本文还对生成函数的这种表征与它在[公式:见文]极限中的表征之间的关系进行了一些深入的研究,其中拉盖尔参数[公式:见文]是固定的,[公式:见文]是固定的(后一种情况与Wigner时滞统计量分布的应用有关)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Applications in random matrix theory of a PIII’ τ-function sequence from Okamoto’s Hamiltonian formulation
We consider the singular linear statistic of the Laguerre unitary ensemble (LUE) consisting of the sum of the reciprocal of the eigenvalues. It is observed that the exponential generating function for this statistic can be written as a Toeplitz determinant with entries given in terms of particular [Formula: see text] Bessel functions. Earlier studies have identified the same determinant, but with the [Formula: see text] Bessel functions replaced by [Formula: see text] Bessel functions, as relating to the hard edge scaling limit of a generalized gap probability for the LUE, in the case of non-negative integer Laguerre parameter. We show that the Toeplitz determinant formed from an arbitrary linear combination of these two Bessel functions occurs as a [Formula: see text]-function sequence in Okamoto’s Hamiltonian formulation of Painlevé III[Formula: see text], and consequently the logarithmic derivative of both Toeplitz determinants satisfies the same [Formula: see text]-form Painlevé III[Formula: see text] differential equation, giving an explanation of a fact which can be observed from earlier results. In addition, some insights into the relationship between this characterization of the generating function, and its characterization in the [Formula: see text] limit, both with the Laguerre parameter [Formula: see text] fixed, and with [Formula: see text] (this latter circumstance being relevant to an application to the distribution of the Wigner time delay statistic), are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信