具有感知损失的文本到图像合成对抗网络

Miriam Cha, Youngjune Gwon, H. T. Kung
{"title":"具有感知损失的文本到图像合成对抗网络","authors":"Miriam Cha, Youngjune Gwon, H. T. Kung","doi":"10.1109/MLSP.2017.8168140","DOIUrl":null,"url":null,"abstract":"Recent approaches in generative adversarial networks (GANs) can automatically synthesize realistic images from descriptive text. Despite the overall fair quality, the generated images often expose visible flaws that lack structural definition for an object of interest. In this paper, we aim to extend state of the art for GAN-based text-to-image synthesis by improving perceptual quality of generated images. Differentiated from previous work, our synthetic image generator optimizes on perceptual loss functions that measure pixel, feature activation, and texture differences against a natural image. We present visually more compelling synthetic images of birds and flowers generated from text descriptions in comparison to some of the most prominent existing work.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"86 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Adversarial nets with perceptual losses for text-to-image synthesis\",\"authors\":\"Miriam Cha, Youngjune Gwon, H. T. Kung\",\"doi\":\"10.1109/MLSP.2017.8168140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent approaches in generative adversarial networks (GANs) can automatically synthesize realistic images from descriptive text. Despite the overall fair quality, the generated images often expose visible flaws that lack structural definition for an object of interest. In this paper, we aim to extend state of the art for GAN-based text-to-image synthesis by improving perceptual quality of generated images. Differentiated from previous work, our synthetic image generator optimizes on perceptual loss functions that measure pixel, feature activation, and texture differences against a natural image. We present visually more compelling synthetic images of birds and flowers generated from text descriptions in comparison to some of the most prominent existing work.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"86 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

生成对抗网络(GANs)的最新方法可以自动从描述性文本合成逼真的图像。尽管总体质量尚可,但生成的图像经常暴露出明显的缺陷,缺乏对感兴趣对象的结构定义。在本文中,我们的目标是通过提高生成图像的感知质量来扩展基于gan的文本到图像合成的最新技术。与之前的工作不同,我们的合成图像生成器优化了感知损失函数,该函数测量自然图像的像素、特征激活和纹理差异。与一些最突出的现有工作相比,我们展示了从文本描述生成的鸟类和花卉的视觉上更引人注目的合成图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial nets with perceptual losses for text-to-image synthesis
Recent approaches in generative adversarial networks (GANs) can automatically synthesize realistic images from descriptive text. Despite the overall fair quality, the generated images often expose visible flaws that lack structural definition for an object of interest. In this paper, we aim to extend state of the art for GAN-based text-to-image synthesis by improving perceptual quality of generated images. Differentiated from previous work, our synthetic image generator optimizes on perceptual loss functions that measure pixel, feature activation, and texture differences against a natural image. We present visually more compelling synthetic images of birds and flowers generated from text descriptions in comparison to some of the most prominent existing work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信