{"title":"纳米颗粒形状对移动纵向多孔翅片热性能的影响","authors":"B. J. Gireesha, G. Sowmya, R. Gorla","doi":"10.1177/2397791420915139","DOIUrl":null,"url":null,"abstract":"A numerical examination of nanoliquid flow over a longitudinal porous fin moving with constant speed is undertaken in the current study. Nickel alloy is used as a nanoparticle, and engineered fluid HFE 7100 is used as a based fluid. In addition, various shapes of nanoparticles like sphere, disc and needle shapes are considered. The generated ordinary differential equation has been nondimensionalized and integrated by using the Runge–Kutta–Fehlberg method. The influence of suitable parameters on the enhancement of heat transfer has been discussed with the help of plotted graphs. Also, the influence of diverse shaped nanoparticle is analysed mathematically. It is found that sphere shaped nanoparticles show better transfer of heat than the disc and needle shapes.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2020-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Nanoparticle shape effect on the thermal behaviour of moving longitudinal porous fin\",\"authors\":\"B. J. Gireesha, G. Sowmya, R. Gorla\",\"doi\":\"10.1177/2397791420915139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical examination of nanoliquid flow over a longitudinal porous fin moving with constant speed is undertaken in the current study. Nickel alloy is used as a nanoparticle, and engineered fluid HFE 7100 is used as a based fluid. In addition, various shapes of nanoparticles like sphere, disc and needle shapes are considered. The generated ordinary differential equation has been nondimensionalized and integrated by using the Runge–Kutta–Fehlberg method. The influence of suitable parameters on the enhancement of heat transfer has been discussed with the help of plotted graphs. Also, the influence of diverse shaped nanoparticle is analysed mathematically. It is found that sphere shaped nanoparticles show better transfer of heat than the disc and needle shapes.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791420915139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791420915139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Nanoparticle shape effect on the thermal behaviour of moving longitudinal porous fin
A numerical examination of nanoliquid flow over a longitudinal porous fin moving with constant speed is undertaken in the current study. Nickel alloy is used as a nanoparticle, and engineered fluid HFE 7100 is used as a based fluid. In addition, various shapes of nanoparticles like sphere, disc and needle shapes are considered. The generated ordinary differential equation has been nondimensionalized and integrated by using the Runge–Kutta–Fehlberg method. The influence of suitable parameters on the enhancement of heat transfer has been discussed with the help of plotted graphs. Also, the influence of diverse shaped nanoparticle is analysed mathematically. It is found that sphere shaped nanoparticles show better transfer of heat than the disc and needle shapes.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.