使用似然场表示的地籍地图中的城市定位

Ali Alharake, Guillaume Bresson, Pierre Merriaux, Vincent Vauchey, X. Savatier
{"title":"使用似然场表示的地籍地图中的城市定位","authors":"Ali Alharake, Guillaume Bresson, Pierre Merriaux, Vincent Vauchey, X. Savatier","doi":"10.1109/ITSC.2019.8917303","DOIUrl":null,"url":null,"abstract":"In this paper we propose the use of existing resources, cadastral plans in particular, to build maps for vehicle localization without requiring the prior passage of a mapping vehicle. This solves the inherent error accumulation in Simultaneous Localization and Mapping algorithms (SLAM). Based on cadastral plans extracted from OpenStreetMaps (OSM), we build prior maps using a Likelihood Field (LF) which takes into account the inaccuracy found in such plans. The built maps are then used to localize a vehicle equipped with an odometer used to predict its next pose, and a LIDAR used to correct the predicted pose using a matching algorithm. We have also compared the difference between using raw scans versus scans processed to include only vertical planes in the matching algorithm. Experiments in real conditions in two urban environments illustrate the benefits of using cadastral plans to constrain the drift of localization algorithms. Moreover, two metrics were used to analyze our results. The conducted tests lead us to choose a set of parameters that suits the map representation proposed herein.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"30 1","pages":"1329-1335"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Urban Localization inside Cadastral Maps using a Likelihood Field Representation\",\"authors\":\"Ali Alharake, Guillaume Bresson, Pierre Merriaux, Vincent Vauchey, X. Savatier\",\"doi\":\"10.1109/ITSC.2019.8917303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose the use of existing resources, cadastral plans in particular, to build maps for vehicle localization without requiring the prior passage of a mapping vehicle. This solves the inherent error accumulation in Simultaneous Localization and Mapping algorithms (SLAM). Based on cadastral plans extracted from OpenStreetMaps (OSM), we build prior maps using a Likelihood Field (LF) which takes into account the inaccuracy found in such plans. The built maps are then used to localize a vehicle equipped with an odometer used to predict its next pose, and a LIDAR used to correct the predicted pose using a matching algorithm. We have also compared the difference between using raw scans versus scans processed to include only vertical planes in the matching algorithm. Experiments in real conditions in two urban environments illustrate the benefits of using cadastral plans to constrain the drift of localization algorithms. Moreover, two metrics were used to analyze our results. The conducted tests lead us to choose a set of parameters that suits the map representation proposed herein.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"30 1\",\"pages\":\"1329-1335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们建议利用现有的资源,特别是地籍计划,建立地图的车辆定位,而不需要事先通过测绘车辆。这解决了同时定位与映射算法(SLAM)固有的误差积累问题。基于从OpenStreetMaps (OSM)中提取的地籍图,我们使用似然场(LF)构建了先验图,该似然场考虑了此类图中发现的不准确性。然后,构建的地图用于定位配备里程表的车辆,里程表用于预测其下一个姿势,激光雷达用于使用匹配算法纠正预测的姿势。我们还比较了使用原始扫描与在匹配算法中只包含垂直平面的处理扫描之间的差异。在两个城市环境的实际条件下进行的实验表明,使用地籍规划来约束定位算法的漂移是有益的。此外,我们还使用了两个指标来分析我们的结果。经过测试,我们选择了一组适合本文提出的映射表示的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban Localization inside Cadastral Maps using a Likelihood Field Representation
In this paper we propose the use of existing resources, cadastral plans in particular, to build maps for vehicle localization without requiring the prior passage of a mapping vehicle. This solves the inherent error accumulation in Simultaneous Localization and Mapping algorithms (SLAM). Based on cadastral plans extracted from OpenStreetMaps (OSM), we build prior maps using a Likelihood Field (LF) which takes into account the inaccuracy found in such plans. The built maps are then used to localize a vehicle equipped with an odometer used to predict its next pose, and a LIDAR used to correct the predicted pose using a matching algorithm. We have also compared the difference between using raw scans versus scans processed to include only vertical planes in the matching algorithm. Experiments in real conditions in two urban environments illustrate the benefits of using cadastral plans to constrain the drift of localization algorithms. Moreover, two metrics were used to analyze our results. The conducted tests lead us to choose a set of parameters that suits the map representation proposed herein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信