多项式算子矩阵数值范围的推广

Darawan Zrar Mohammed, Ahmed Muhammad
{"title":"多项式算子矩阵数值范围的推广","authors":"Darawan Zrar Mohammed, Ahmed Muhammad","doi":"10.25130/tjps.v28i1.1268","DOIUrl":null,"url":null,"abstract":"Suppose that  is a polynomial matrix operator where  for , are  complex matrix and let  be a complex variable. For an  Hermitian matrix , we define the -numerical range of polynomial matrix of  as , where . In this paper we study   and our emphasis is on the geometrical properties of . We consider the location of   in the complex plane and  a theorem concerning  the boundary of is also obtained.  Possible generalazations of our results including their extensions to bounded linerar operators on an infinite dimensional Hilbert space are described.","PeriodicalId":23142,"journal":{"name":"Tikrit Journal of Pure Science","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of numerical range of polynomial operator matrices\",\"authors\":\"Darawan Zrar Mohammed, Ahmed Muhammad\",\"doi\":\"10.25130/tjps.v28i1.1268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that  is a polynomial matrix operator where  for , are  complex matrix and let  be a complex variable. For an  Hermitian matrix , we define the -numerical range of polynomial matrix of  as , where . In this paper we study   and our emphasis is on the geometrical properties of . We consider the location of   in the complex plane and  a theorem concerning  the boundary of is also obtained.  Possible generalazations of our results including their extensions to bounded linerar operators on an infinite dimensional Hilbert space are described.\",\"PeriodicalId\":23142,\"journal\":{\"name\":\"Tikrit Journal of Pure Science\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tikrit Journal of Pure Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25130/tjps.v28i1.1268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Pure Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjps.v28i1.1268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设为多项式矩阵算子,为复矩阵,设为复变量。对于厄米矩阵,我们定义了a的多项式矩阵的-数值范围,其中。的几何性质是本文研究的重点。考虑点在复平面上的位置,得到了点的边界定理。描述了我们的结果的可能推广,包括它们在无限维希尔伯特空间上的有界线性算子的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of numerical range of polynomial operator matrices
Suppose that  is a polynomial matrix operator where  for , are  complex matrix and let  be a complex variable. For an  Hermitian matrix , we define the -numerical range of polynomial matrix of  as , where . In this paper we study   and our emphasis is on the geometrical properties of . We consider the location of   in the complex plane and  a theorem concerning  the boundary of is also obtained.  Possible generalazations of our results including their extensions to bounded linerar operators on an infinite dimensional Hilbert space are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信