{"title":"“水-氧化铝”纳米流体在卧式集热器中的传热效率","authors":"T. Rymar, M. Vodko","doi":"10.23939/ctas2022.02.165","DOIUrl":null,"url":null,"abstract":"The heat transfer of the “water – Al2O3” nanofluid in the Ø 32 × 3 mm horizontal Slinky collector of spiral configuration of a heat pump have been studied. Nanofluid has good characteristics for use in the energy sector due to its high thermal properties. Studies were performed in the range of changes in the concentration of nanoparticles from 0.38 to 1.3 % vol. for the energy system of an energy-independent building, in particular, for the heating and non-heating periods of the heat supply system for the Kyiv region.","PeriodicalId":9808,"journal":{"name":"Chemistry, Technology and Application of Substances","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE HEAT TRANSFER EFFICIENCY IN SLINKY HORIZONTAL COLLECTOR WITH “Water – Al2O3” NANOFLUID\",\"authors\":\"T. Rymar, M. Vodko\",\"doi\":\"10.23939/ctas2022.02.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heat transfer of the “water – Al2O3” nanofluid in the Ø 32 × 3 mm horizontal Slinky collector of spiral configuration of a heat pump have been studied. Nanofluid has good characteristics for use in the energy sector due to its high thermal properties. Studies were performed in the range of changes in the concentration of nanoparticles from 0.38 to 1.3 % vol. for the energy system of an energy-independent building, in particular, for the heating and non-heating periods of the heat supply system for the Kyiv region.\",\"PeriodicalId\":9808,\"journal\":{\"name\":\"Chemistry, Technology and Application of Substances\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry, Technology and Application of Substances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/ctas2022.02.165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry, Technology and Application of Substances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/ctas2022.02.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE HEAT TRANSFER EFFICIENCY IN SLINKY HORIZONTAL COLLECTOR WITH “Water – Al2O3” NANOFLUID
The heat transfer of the “water – Al2O3” nanofluid in the Ø 32 × 3 mm horizontal Slinky collector of spiral configuration of a heat pump have been studied. Nanofluid has good characteristics for use in the energy sector due to its high thermal properties. Studies were performed in the range of changes in the concentration of nanoparticles from 0.38 to 1.3 % vol. for the energy system of an energy-independent building, in particular, for the heating and non-heating periods of the heat supply system for the Kyiv region.