金纳米粒子在辐射环境中的演化

S. Briggs, K. Hattar
{"title":"金纳米粒子在辐射环境中的演化","authors":"S. Briggs, K. Hattar","doi":"10.5772/INTECHOPEN.80366","DOIUrl":null,"url":null,"abstract":"Gold nanoparticles are being explored for several applications in radiation environments, including uses in cancer radiotherapy treatments and advanced satellite or detector applications. In these applications, nanoparticle interactions with energetic neutrons, photons, and charged particles can cause structural damage ranging from single atom displacement events to bulk morphological changes. Due to the diminutive length scales and prodigious surface-to-volume ratios of gold nanoparticles, radiation damage effects are typically dominated by sputtering and surface interactions and can vary drastically from bulk behavior and classical models. Here, we report on contemporary experimental and computational modeling efforts that have contributed to the current understanding of how ionizing radiation environments affect the structure and properties of gold nanoparticles. The future potential for elucidating the active mechanisms in gold nanoparticles exposed to ionizing radiation and the subsequent ability to predictively model the radiation stability and ion beam modification parameters will be discussed.","PeriodicalId":12764,"journal":{"name":"Gold Nanoparticles - Reaching New Heights","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evolution of Gold Nanoparticles in Radiation Environments\",\"authors\":\"S. Briggs, K. Hattar\",\"doi\":\"10.5772/INTECHOPEN.80366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold nanoparticles are being explored for several applications in radiation environments, including uses in cancer radiotherapy treatments and advanced satellite or detector applications. In these applications, nanoparticle interactions with energetic neutrons, photons, and charged particles can cause structural damage ranging from single atom displacement events to bulk morphological changes. Due to the diminutive length scales and prodigious surface-to-volume ratios of gold nanoparticles, radiation damage effects are typically dominated by sputtering and surface interactions and can vary drastically from bulk behavior and classical models. Here, we report on contemporary experimental and computational modeling efforts that have contributed to the current understanding of how ionizing radiation environments affect the structure and properties of gold nanoparticles. The future potential for elucidating the active mechanisms in gold nanoparticles exposed to ionizing radiation and the subsequent ability to predictively model the radiation stability and ion beam modification parameters will be discussed.\",\"PeriodicalId\":12764,\"journal\":{\"name\":\"Gold Nanoparticles - Reaching New Heights\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Nanoparticles - Reaching New Heights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.80366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Nanoparticles - Reaching New Heights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

正在探索金纳米颗粒在辐射环境中的几种应用,包括用于癌症放射治疗和先进的卫星或探测器应用。在这些应用中,纳米粒子与高能中子、光子和带电粒子的相互作用会导致结构损伤,从单原子位移事件到整体形态变化。由于金纳米粒子的微小长度尺度和巨大的表面体积比,辐射损伤效应通常由溅射和表面相互作用主导,并且可能与体行为和经典模型有很大差异。在这里,我们报告了当代实验和计算模型的努力,这些努力有助于当前对电离辐射环境如何影响金纳米颗粒的结构和性质的理解。未来的潜力,阐明在电离辐射暴露的金纳米粒子的活性机制和随后的能力预测模型的辐射稳定性和离子束修饰参数将被讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of Gold Nanoparticles in Radiation Environments
Gold nanoparticles are being explored for several applications in radiation environments, including uses in cancer radiotherapy treatments and advanced satellite or detector applications. In these applications, nanoparticle interactions with energetic neutrons, photons, and charged particles can cause structural damage ranging from single atom displacement events to bulk morphological changes. Due to the diminutive length scales and prodigious surface-to-volume ratios of gold nanoparticles, radiation damage effects are typically dominated by sputtering and surface interactions and can vary drastically from bulk behavior and classical models. Here, we report on contemporary experimental and computational modeling efforts that have contributed to the current understanding of how ionizing radiation environments affect the structure and properties of gold nanoparticles. The future potential for elucidating the active mechanisms in gold nanoparticles exposed to ionizing radiation and the subsequent ability to predictively model the radiation stability and ion beam modification parameters will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信