Shuffle模型上的隐私保护SGD

IF 0.7 Q2 MATHEMATICS
Lingjie Zhang, Hai Zhang
{"title":"Shuffle模型上的隐私保护SGD","authors":"Lingjie Zhang, Hai Zhang","doi":"10.1155/2023/4055950","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we consider an exceptional study of differentially private stochastic gradient descent (SGD) algorithms in the stochastic convex optimization (SCO). The majority of the existing literature requires that the losses have additional assumptions, such as the loss functions with Lipschitz, smooth and strongly convex, and uniformly bounded of the model parameters, or focus on the Euclidean (i.e. <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msubsup>\n <mrow>\n <mi mathvariant=\"script\">l</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>d</mi>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula>) setting. However, these restrictive requirements exclude many popular losses, including the absolute loss and the hinge loss. By loosening the restrictions, we proposed two differentially private SGD without shuffle model and with shuffle model algorithms (in short, DP-SGD-NOS and DP-SGD-S) for the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>L</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-Hölder smooth loss by adding calibrated Laplace noise under no shuffling scheme and shuffling scheme in the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msubsup>\n <mrow>\n <mi mathvariant=\"script\">l</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mi>d</mi>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula>-setting for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>p</mi>\n <mo>∈</mo>\n <mfenced open=\"[\" close=\"]\" separators=\"|\">\n <mrow>\n <mn>1,2</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. We provide privacy guarantees by using advanced composition and privacy amplification techniques. We also analyze the convergence bounds of the DP-SGD-NOS and DP-SGD-S and obtain the optimal excess population risks <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi mathvariant=\"script\">O</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n <mo>+</mo>\n <mrow>\n <msqrt>\n <mrow>\n <mi>d</mi>\n <mtext> </mtext>\n <mi mathvariant=\"normal\">log</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>δ</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </msqrt>\n <mo>/</mo>\n <mrow>\n <mi>n</mi>\n <mi>ϵ</mi>\n </mrow>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi mathvariant=\"script\">O</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n <mo>+</mo>\n <mrow>\n <msqrt>\n <mrow>\n <mi>d</mi>\n <mtext> </mtext>\n <mi mathvariant=\"normal\">log</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>δ</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mi mathvariant=\"normal\">log</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>n</mi>\n <mo>/</mo>\n <mi>δ</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </msqrt>\n <mo>/</mo>\n <mrow>\n <msup>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>4</mn>\n <mo>+</mo>\n <mi>α</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>/</mo>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>α</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </msup>\n <mi>ϵ</mi>\n </mrow>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> up to logarithmic factors with gradient complexity <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi mathvariant=\"script\">O</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msup>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mfenced ","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"59 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-Preserving SGD on Shuffle Model\",\"authors\":\"Lingjie Zhang, Hai Zhang\",\"doi\":\"10.1155/2023/4055950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper, we consider an exceptional study of differentially private stochastic gradient descent (SGD) algorithms in the stochastic convex optimization (SCO). The majority of the existing literature requires that the losses have additional assumptions, such as the loss functions with Lipschitz, smooth and strongly convex, and uniformly bounded of the model parameters, or focus on the Euclidean (i.e. <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msubsup>\\n <mrow>\\n <mi mathvariant=\\\"script\\\">l</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </msubsup>\\n </math>\\n </jats:inline-formula>) setting. However, these restrictive requirements exclude many popular losses, including the absolute loss and the hinge loss. By loosening the restrictions, we proposed two differentially private SGD without shuffle model and with shuffle model algorithms (in short, DP-SGD-NOS and DP-SGD-S) for the <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>L</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-Hölder smooth loss by adding calibrated Laplace noise under no shuffling scheme and shuffling scheme in the <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <msubsup>\\n <mrow>\\n <mi mathvariant=\\\"script\\\">l</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </msubsup>\\n </math>\\n </jats:inline-formula>-setting for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mfenced open=\\\"[\\\" close=\\\"]\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>1,2</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>. We provide privacy guarantees by using advanced composition and privacy amplification techniques. We also analyze the convergence bounds of the DP-SGD-NOS and DP-SGD-S and obtain the optimal excess population risks <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi mathvariant=\\\"script\\\">O</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <msqrt>\\n <mi>n</mi>\\n </msqrt>\\n </mrow>\\n <mo>+</mo>\\n <mrow>\\n <msqrt>\\n <mrow>\\n <mi>d</mi>\\n <mtext> </mtext>\\n <mi mathvariant=\\\"normal\\\">log</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mi>δ</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </msqrt>\\n <mo>/</mo>\\n <mrow>\\n <mi>n</mi>\\n <mi>ϵ</mi>\\n </mrow>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi mathvariant=\\\"script\\\">O</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <msqrt>\\n <mi>n</mi>\\n </msqrt>\\n </mrow>\\n <mo>+</mo>\\n <mrow>\\n <msqrt>\\n <mrow>\\n <mi>d</mi>\\n <mtext> </mtext>\\n <mi mathvariant=\\\"normal\\\">log</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mi>δ</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mi mathvariant=\\\"normal\\\">log</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>n</mi>\\n <mo>/</mo>\\n <mi>δ</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </msqrt>\\n <mo>/</mo>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <mrow>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>4</mn>\\n <mo>+</mo>\\n <mi>α</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>/</mo>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>α</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </msup>\\n <mi>ϵ</mi>\\n </mrow>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> up to logarithmic factors with gradient complexity <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi mathvariant=\\\"script\\\">O</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <mrow>\\n <mfenced \",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4055950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4055950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了随机凸优化(SCO)中微分私有随机梯度下降(SGD)算法的特殊研究。现有文献大多要求损失具有附加假设,如损失函数具有Lipschitz、光滑且强凸、模型参数均匀有界等;或专注于欧几里得(即二维)设置。然而,这些限制性要求排除了许多常见的损耗,包括绝对损耗和铰链损耗。通过放宽限制,我们提出了两种不同的私有SGD算法(即DP-SGD-NOS和DP-SGD-S),用于α,L -Hölder在无洗牌方案和在L p中加入校准拉普拉斯噪声的平滑损失D -设为p∈1,2。我们通过使用先进的组合和隐私放大技术提供隐私保证。我们还分析了DP-SGD-NOS和DP-SGD-S的收敛界,得到了最优超额群体风险O 1 / n +D log1 / δ/ nO (1 / n + dlog1 / δ logN / δ 在本文中,我们考虑了随机凸优化(SCO)中微分私有随机梯度下降(SGD)算法的特殊研究。现有文献大多要求损失具有附加假设,如损失函数具有Lipschitz、光滑且强凸、模型参数均匀有界等;或专注于欧几里得(即二维)设置。然而,这些限制性要求排除了许多常见的损耗,包括绝对损耗和铰链损耗。通过放宽限制,我们提出了两种不同的私有SGD算法(即DP-SGD-NOS和DP-SGD-S),用于α,L -Hölder在无洗牌方案和在L p中加入校准拉普拉斯噪声的平滑损失D -设为p∈1,2。我们通过使用先进的组合和隐私放大技术提供隐私保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-Preserving SGD on Shuffle Model
In this paper, we consider an exceptional study of differentially private stochastic gradient descent (SGD) algorithms in the stochastic convex optimization (SCO). The majority of the existing literature requires that the losses have additional assumptions, such as the loss functions with Lipschitz, smooth and strongly convex, and uniformly bounded of the model parameters, or focus on the Euclidean (i.e. l 2 d ) setting. However, these restrictive requirements exclude many popular losses, including the absolute loss and the hinge loss. By loosening the restrictions, we proposed two differentially private SGD without shuffle model and with shuffle model algorithms (in short, DP-SGD-NOS and DP-SGD-S) for the α , L -Hölder smooth loss by adding calibrated Laplace noise under no shuffling scheme and shuffling scheme in the l p d -setting for p 1,2 . We provide privacy guarantees by using advanced composition and privacy amplification techniques. We also analyze the convergence bounds of the DP-SGD-NOS and DP-SGD-S and obtain the optimal excess population risks O 1 / n + d log 1 / δ / n ϵ and O 1 / n + d log 1 / δ log n / δ / n 4 + α / 2 1 + α ϵ up to logarithmic factors with gradient complexity O n
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信