{"title":"二元列联表的渐近枚举与独立启发式比较","authors":"Da Wu","doi":"10.47443/cm.2023.037","DOIUrl":null,"url":null,"abstract":"For parameters $n,\\delta,B,C$, we obtain sharp asymptotic formula for number of $(n+\\lfloor n^\\delta\\rfloor)^2$ dimensional binary contingency tables with non-uniform margins $\\lfloor BCn\\rfloor$ and $\\lfloor Cn\\rfloor$. Furthermore, we compare our results with the classical \\textit{independent heuristic} and prove that the independent heuristic overestimates by a factor of $e^{\\Theta(n^{2\\delta})}$. Our comparison is based on the analysis of the \\textit{correlation ratio} and we obtain the explicit bound for the constant in $\\Theta$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Asymptotic enumeration of binary contingency tables and comparison with independence heuristic\",\"authors\":\"Da Wu\",\"doi\":\"10.47443/cm.2023.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For parameters $n,\\\\delta,B,C$, we obtain sharp asymptotic formula for number of $(n+\\\\lfloor n^\\\\delta\\\\rfloor)^2$ dimensional binary contingency tables with non-uniform margins $\\\\lfloor BCn\\\\rfloor$ and $\\\\lfloor Cn\\\\rfloor$. Furthermore, we compare our results with the classical \\\\textit{independent heuristic} and prove that the independent heuristic overestimates by a factor of $e^{\\\\Theta(n^{2\\\\delta})}$. Our comparison is based on the analysis of the \\\\textit{correlation ratio} and we obtain the explicit bound for the constant in $\\\\Theta$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.47443/cm.2023.037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2023.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic enumeration of binary contingency tables and comparison with independence heuristic
For parameters $n,\delta,B,C$, we obtain sharp asymptotic formula for number of $(n+\lfloor n^\delta\rfloor)^2$ dimensional binary contingency tables with non-uniform margins $\lfloor BCn\rfloor$ and $\lfloor Cn\rfloor$. Furthermore, we compare our results with the classical \textit{independent heuristic} and prove that the independent heuristic overestimates by a factor of $e^{\Theta(n^{2\delta})}$. Our comparison is based on the analysis of the \textit{correlation ratio} and we obtain the explicit bound for the constant in $\Theta$.