二元列联表的渐近枚举与独立启发式比较

Pub Date : 2020-10-24 DOI:10.47443/cm.2023.037
Da Wu
{"title":"二元列联表的渐近枚举与独立启发式比较","authors":"Da Wu","doi":"10.47443/cm.2023.037","DOIUrl":null,"url":null,"abstract":"For parameters $n,\\delta,B,C$, we obtain sharp asymptotic formula for number of $(n+\\lfloor n^\\delta\\rfloor)^2$ dimensional binary contingency tables with non-uniform margins $\\lfloor BCn\\rfloor$ and $\\lfloor Cn\\rfloor$. Furthermore, we compare our results with the classical \\textit{independent heuristic} and prove that the independent heuristic overestimates by a factor of $e^{\\Theta(n^{2\\delta})}$. Our comparison is based on the analysis of the \\textit{correlation ratio} and we obtain the explicit bound for the constant in $\\Theta$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Asymptotic enumeration of binary contingency tables and comparison with independence heuristic\",\"authors\":\"Da Wu\",\"doi\":\"10.47443/cm.2023.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For parameters $n,\\\\delta,B,C$, we obtain sharp asymptotic formula for number of $(n+\\\\lfloor n^\\\\delta\\\\rfloor)^2$ dimensional binary contingency tables with non-uniform margins $\\\\lfloor BCn\\\\rfloor$ and $\\\\lfloor Cn\\\\rfloor$. Furthermore, we compare our results with the classical \\\\textit{independent heuristic} and prove that the independent heuristic overestimates by a factor of $e^{\\\\Theta(n^{2\\\\delta})}$. Our comparison is based on the analysis of the \\\\textit{correlation ratio} and we obtain the explicit bound for the constant in $\\\\Theta$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.47443/cm.2023.037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2023.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

对于参数$n,\delta,B,C$,我们得到了具有非均匀边距$\lfloor BCn\rfloor$和$\lfloor Cn\rfloor$的$(n+\lfloor n^\delta\rfloor)^2$维二元列联表数目的尖锐渐近公式。此外,我们将我们的结果与经典的\textit{独立启发式}进行了比较,并证明了独立启发式高估了$e^{\Theta(n^{2\delta})}$的一个因子。我们的比较是基于对\textit{相关比}的分析,我们得到了$\Theta$中常数的显式边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotic enumeration of binary contingency tables and comparison with independence heuristic
For parameters $n,\delta,B,C$, we obtain sharp asymptotic formula for number of $(n+\lfloor n^\delta\rfloor)^2$ dimensional binary contingency tables with non-uniform margins $\lfloor BCn\rfloor$ and $\lfloor Cn\rfloor$. Furthermore, we compare our results with the classical \textit{independent heuristic} and prove that the independent heuristic overestimates by a factor of $e^{\Theta(n^{2\delta})}$. Our comparison is based on the analysis of the \textit{correlation ratio} and we obtain the explicit bound for the constant in $\Theta$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信