新型生态友好型动力学水合物抑制剂

Kui Xu, Jonathan Stewart-Ayala, Steve Jackson, Benton Hutchinson, Christina Sanders, W. Jakubowski, Joanne Jardine, Rose Lehman
{"title":"新型生态友好型动力学水合物抑制剂","authors":"Kui Xu, Jonathan Stewart-Ayala, Steve Jackson, Benton Hutchinson, Christina Sanders, W. Jakubowski, Joanne Jardine, Rose Lehman","doi":"10.2118/204779-ms","DOIUrl":null,"url":null,"abstract":"\n Amid concerns over negative the environmental impacts of offshore chemicals, Baker Hughes explored new chemistries to develop environmentally friendly kinetic hydrate inhibitors (KHI). Our efforts were focused on improving biodegradability and toxicity of KHIs to meet environmental protection requirements, as well as mitigating challenges in field applications. A novel KHI design with branched polymers containing sugar alcohol ester groups as linkages, was proposed and synthesized. The new KHI polymer demonstrated > 20% biodegradability and >100 mg/L toxicity to seawater algae, and it also exhibited competitive or even better KHI performance to traditional non-biodegradable KHI products. Additionally, new KHI showed improved stability in water/brine at elevated temperatures as compared to traditional KHI products, which might mitigate concerns on polymer deposition at high temperatures.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Eco-Friendly Kinetic Hydrate Inhibitors\",\"authors\":\"Kui Xu, Jonathan Stewart-Ayala, Steve Jackson, Benton Hutchinson, Christina Sanders, W. Jakubowski, Joanne Jardine, Rose Lehman\",\"doi\":\"10.2118/204779-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Amid concerns over negative the environmental impacts of offshore chemicals, Baker Hughes explored new chemistries to develop environmentally friendly kinetic hydrate inhibitors (KHI). Our efforts were focused on improving biodegradability and toxicity of KHIs to meet environmental protection requirements, as well as mitigating challenges in field applications. A novel KHI design with branched polymers containing sugar alcohol ester groups as linkages, was proposed and synthesized. The new KHI polymer demonstrated > 20% biodegradability and >100 mg/L toxicity to seawater algae, and it also exhibited competitive or even better KHI performance to traditional non-biodegradable KHI products. Additionally, new KHI showed improved stability in water/brine at elevated temperatures as compared to traditional KHI products, which might mitigate concerns on polymer deposition at high temperatures.\",\"PeriodicalId\":11024,\"journal\":{\"name\":\"Day 4 Wed, December 01, 2021\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Wed, December 01, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204779-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204779-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于担心海上化学品对环境的负面影响,贝克休斯探索了新的化学物质来开发环保型动力学水合物抑制剂(KHI)。我们的工作重点是提高KHIs的生物降解性和毒性,以满足环境保护要求,并减轻现场应用中的挑战。提出并合成了一种以含糖醇酯基的支链聚合物为键的新型KHI设计。新型KHI聚合物的可生物降解性> 20%,对海藻的毒性>100 mg/L,与传统的不可生物降解的KHI产品相比,具有竞争力甚至更好的KHI性能。此外,与传统的KHI产品相比,新型KHI在高温下在水/盐水中的稳定性有所提高,这可能会减轻高温下聚合物沉积的担忧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Eco-Friendly Kinetic Hydrate Inhibitors
Amid concerns over negative the environmental impacts of offshore chemicals, Baker Hughes explored new chemistries to develop environmentally friendly kinetic hydrate inhibitors (KHI). Our efforts were focused on improving biodegradability and toxicity of KHIs to meet environmental protection requirements, as well as mitigating challenges in field applications. A novel KHI design with branched polymers containing sugar alcohol ester groups as linkages, was proposed and synthesized. The new KHI polymer demonstrated > 20% biodegradability and >100 mg/L toxicity to seawater algae, and it also exhibited competitive or even better KHI performance to traditional non-biodegradable KHI products. Additionally, new KHI showed improved stability in water/brine at elevated temperatures as compared to traditional KHI products, which might mitigate concerns on polymer deposition at high temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信