具有一阶导数依赖的半线上奇异三阶bvp的正解

Pub Date : 2021-08-01 DOI:10.2478/ausm-2021-0006
Abdelhamid Benmezaï, El-Djouher Sedkaoui
{"title":"具有一阶导数依赖的半线上奇异三阶bvp的正解","authors":"Abdelhamid Benmezaï, El-Djouher Sedkaoui","doi":"10.2478/ausm-2021-0006","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the existence of a positive solution to the third-order boundary value problem { -u‴(t)+k2u′(t)=φ(t)f(t,u(t),u′(t)),   t>0u(0)=u′(0)=u′(+∞)=0, \\left\\{ \\matrix{- u'''\\left( t \\right) + {k^2}u'\\left( t \\right) = \\phi \\left( t \\right)f\\left( {t,u\\left( t \\right),u'\\left( t \\right)} \\right),\\,\\,\\,t > 0 \\hfill \\cr u\\left( 0 \\right) = u'\\left( 0 \\right) = u'\\left( { + \\infty } \\right) = 0, \\hfill \\cr} \\right. where k is a positive constant, ϕ ∈ L1 (0;+ ∞) is nonnegative and does vanish identically on (0;+ ∞) and the function f : ℝ+ × (0;+ ∞) × (0;+ ∞) → ℝ+ is continuous and may be singular at the space variable and at its derivative.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Positive solution for singular third-order BVPs on the half line with first-order derivative dependence\",\"authors\":\"Abdelhamid Benmezaï, El-Djouher Sedkaoui\",\"doi\":\"10.2478/ausm-2021-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we investigate the existence of a positive solution to the third-order boundary value problem { -u‴(t)+k2u′(t)=φ(t)f(t,u(t),u′(t)),   t>0u(0)=u′(0)=u′(+∞)=0, \\\\left\\\\{ \\\\matrix{- u'''\\\\left( t \\\\right) + {k^2}u'\\\\left( t \\\\right) = \\\\phi \\\\left( t \\\\right)f\\\\left( {t,u\\\\left( t \\\\right),u'\\\\left( t \\\\right)} \\\\right),\\\\,\\\\,\\\\,t > 0 \\\\hfill \\\\cr u\\\\left( 0 \\\\right) = u'\\\\left( 0 \\\\right) = u'\\\\left( { + \\\\infty } \\\\right) = 0, \\\\hfill \\\\cr} \\\\right. where k is a positive constant, ϕ ∈ L1 (0;+ ∞) is nonnegative and does vanish identically on (0;+ ∞) and the function f : ℝ+ × (0;+ ∞) × (0;+ ∞) → ℝ+ is continuous and may be singular at the space variable and at its derivative.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2021-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2021-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了三阶边值问题{- u′(t) +k2u′(t)=φ(t)f(t,u(t),u′(t))的正解的存在性,t >0u(0)=u′(0)=u′(+∞)=0,\左\{\矩阵{- u′′\左(t \右)+ {k′2}u′\左(t \右)= \phi \左(t \右)f\左({t,u\左(t \右),\,\,\,t >0 \hfill \cr u\左(0 \右)=u′\左(0 \右)=u′\左({+ \infty} \右)=0,\hfill \cr u\左(0 \右)=u′\左(0 \右)。其中k是一个正常数,则φ∈L1(0;+∞)是非负的,并且在(0;+∞)上相等消失,函数f: m + x(0;+∞)×(0;+∞)→m +是连续的,并且在空间变量及其导数处可能是奇异的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Positive solution for singular third-order BVPs on the half line with first-order derivative dependence
Abstract In this paper, we investigate the existence of a positive solution to the third-order boundary value problem { -u‴(t)+k2u′(t)=φ(t)f(t,u(t),u′(t)),   t>0u(0)=u′(0)=u′(+∞)=0, \left\{ \matrix{- u'''\left( t \right) + {k^2}u'\left( t \right) = \phi \left( t \right)f\left( {t,u\left( t \right),u'\left( t \right)} \right),\,\,\,t > 0 \hfill \cr u\left( 0 \right) = u'\left( 0 \right) = u'\left( { + \infty } \right) = 0, \hfill \cr} \right. where k is a positive constant, ϕ ∈ L1 (0;+ ∞) is nonnegative and does vanish identically on (0;+ ∞) and the function f : ℝ+ × (0;+ ∞) × (0;+ ∞) → ℝ+ is continuous and may be singular at the space variable and at its derivative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信