基于灰色AR组合模型的发动机状态监测

Qiang Wang, Sheng Hui Dai
{"title":"基于灰色AR组合模型的发动机状态监测","authors":"Qiang Wang, Sheng Hui Dai","doi":"10.1109/CESCE.2010.19","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of the wear condition monitoring, grey theory and auto-regressive combination forecasting model was put forward, and the combination model was build. The rough trend of the wear particle content change can be reflected through grey theory, and the detail of the change can be reflected through auto-regressive model. By testing and comparing a set of Ferro graphic data, the result shows that the combination model has a better forecasting result.","PeriodicalId":6371,"journal":{"name":"2010 International Conference on Challenges in Environmental Science and Computer Engineering","volume":"74 1","pages":"215-218"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Engine Condition Monitoring Based on Grey AR Combination Model\",\"authors\":\"Qiang Wang, Sheng Hui Dai\",\"doi\":\"10.1109/CESCE.2010.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of the wear condition monitoring, grey theory and auto-regressive combination forecasting model was put forward, and the combination model was build. The rough trend of the wear particle content change can be reflected through grey theory, and the detail of the change can be reflected through auto-regressive model. By testing and comparing a set of Ferro graphic data, the result shows that the combination model has a better forecasting result.\",\"PeriodicalId\":6371,\"journal\":{\"name\":\"2010 International Conference on Challenges in Environmental Science and Computer Engineering\",\"volume\":\"74 1\",\"pages\":\"215-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Challenges in Environmental Science and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CESCE.2010.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Challenges in Environmental Science and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CESCE.2010.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对磨损状态监测中存在的问题,提出了灰色理论和自回归组合预测模型,并建立了组合预测模型。通过灰色理论可以反映磨损颗粒含量变化的大致趋势,通过自回归模型可以反映变化的细节。通过对一组Ferro图形数据的检验和比较,结果表明该组合模型具有较好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engine Condition Monitoring Based on Grey AR Combination Model
Aiming at the problems of the wear condition monitoring, grey theory and auto-regressive combination forecasting model was put forward, and the combination model was build. The rough trend of the wear particle content change can be reflected through grey theory, and the detail of the change can be reflected through auto-regressive model. By testing and comparing a set of Ferro graphic data, the result shows that the combination model has a better forecasting result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信