{"title":"地质遗址的地貌模型比较,利用地质多样性的定性和定量评估,新西兰科罗曼德尔半岛","authors":"Vladyslav Zakharovskyi, K. Németh","doi":"10.3390/geographies2040037","DOIUrl":null,"url":null,"abstract":"In qualitative–quantitative assessment of geodiversity, geomorphology describes landscape forms suggesting specific locations as geosites. However, all digital elevation models (DEM) contain information only about altitude and coordinate systems, which are not enough data for inclusion assessments. To overcome this, researchers may transform altitude parameters into a range of different models such as slope, aspect, plan, and profile curvature. More complex models such as Geomorphon or Topographic Position Index (TPI) may be used to build visualizations of landscapes. All these models are rarely used together, but rather separately for specific purposes—for example, aspect may be used in soil science and agriculture, while slope is considered useful for geology and topography. Therefore, a qualitative–quantitative assessment of geodiversity has been developed to recognize possible geosite locations and simplify their search through field observation and further description. The Coromandel Peninsula have been chosen as an area of study due to landscape diversity formed by Miocene–Pleistocene volcanism which evolved on a basement of Jurassic Greywacke and has become surrounded and partially covered by Quaternary sediments. Hence, this research provides a comparison of six different models for geomorphological assessment. Models are based on DEM with surface irregularities in locations with distinct elevation differences, which can be considered geosites. These models have been separated according to their parameters of representations: numerical value and types of landscape. Numerical value (starting at 0, applied to the area of study) models are based on slope, ruggedness, roughness, and total curvature. Meanwhile, Geomorphon and TPI are landscape parameters, which define different types of relief ranging from stream valleys and hills to mountain ranges. However, using landscape parameters requires additional evaluation, unlike numerical value models. In conclusion, we describe six models used to calculate a range of values which can be used for geodiversity assessment, and to highlight potential geodiversity hotspots. Subsequently, all models are compared with each other to identify differences between them. Finally, we outline the advantages and shortcomings of the models for performing qualitative–quantitative assessments.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Geomorphological Model Comparison for Geosites, Utilizing Qualitative–Quantitative Assessment of Geodiversity, Coromandel Peninsula, New Zealand\",\"authors\":\"Vladyslav Zakharovskyi, K. Németh\",\"doi\":\"10.3390/geographies2040037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In qualitative–quantitative assessment of geodiversity, geomorphology describes landscape forms suggesting specific locations as geosites. However, all digital elevation models (DEM) contain information only about altitude and coordinate systems, which are not enough data for inclusion assessments. To overcome this, researchers may transform altitude parameters into a range of different models such as slope, aspect, plan, and profile curvature. More complex models such as Geomorphon or Topographic Position Index (TPI) may be used to build visualizations of landscapes. All these models are rarely used together, but rather separately for specific purposes—for example, aspect may be used in soil science and agriculture, while slope is considered useful for geology and topography. Therefore, a qualitative–quantitative assessment of geodiversity has been developed to recognize possible geosite locations and simplify their search through field observation and further description. The Coromandel Peninsula have been chosen as an area of study due to landscape diversity formed by Miocene–Pleistocene volcanism which evolved on a basement of Jurassic Greywacke and has become surrounded and partially covered by Quaternary sediments. Hence, this research provides a comparison of six different models for geomorphological assessment. Models are based on DEM with surface irregularities in locations with distinct elevation differences, which can be considered geosites. These models have been separated according to their parameters of representations: numerical value and types of landscape. Numerical value (starting at 0, applied to the area of study) models are based on slope, ruggedness, roughness, and total curvature. Meanwhile, Geomorphon and TPI are landscape parameters, which define different types of relief ranging from stream valleys and hills to mountain ranges. However, using landscape parameters requires additional evaluation, unlike numerical value models. In conclusion, we describe six models used to calculate a range of values which can be used for geodiversity assessment, and to highlight potential geodiversity hotspots. Subsequently, all models are compared with each other to identify differences between them. Finally, we outline the advantages and shortcomings of the models for performing qualitative–quantitative assessments.\",\"PeriodicalId\":38507,\"journal\":{\"name\":\"Human Geographies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Geographies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geographies2040037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies2040037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Geomorphological Model Comparison for Geosites, Utilizing Qualitative–Quantitative Assessment of Geodiversity, Coromandel Peninsula, New Zealand
In qualitative–quantitative assessment of geodiversity, geomorphology describes landscape forms suggesting specific locations as geosites. However, all digital elevation models (DEM) contain information only about altitude and coordinate systems, which are not enough data for inclusion assessments. To overcome this, researchers may transform altitude parameters into a range of different models such as slope, aspect, plan, and profile curvature. More complex models such as Geomorphon or Topographic Position Index (TPI) may be used to build visualizations of landscapes. All these models are rarely used together, but rather separately for specific purposes—for example, aspect may be used in soil science and agriculture, while slope is considered useful for geology and topography. Therefore, a qualitative–quantitative assessment of geodiversity has been developed to recognize possible geosite locations and simplify their search through field observation and further description. The Coromandel Peninsula have been chosen as an area of study due to landscape diversity formed by Miocene–Pleistocene volcanism which evolved on a basement of Jurassic Greywacke and has become surrounded and partially covered by Quaternary sediments. Hence, this research provides a comparison of six different models for geomorphological assessment. Models are based on DEM with surface irregularities in locations with distinct elevation differences, which can be considered geosites. These models have been separated according to their parameters of representations: numerical value and types of landscape. Numerical value (starting at 0, applied to the area of study) models are based on slope, ruggedness, roughness, and total curvature. Meanwhile, Geomorphon and TPI are landscape parameters, which define different types of relief ranging from stream valleys and hills to mountain ranges. However, using landscape parameters requires additional evaluation, unlike numerical value models. In conclusion, we describe six models used to calculate a range of values which can be used for geodiversity assessment, and to highlight potential geodiversity hotspots. Subsequently, all models are compared with each other to identify differences between them. Finally, we outline the advantages and shortcomings of the models for performing qualitative–quantitative assessments.