基于深度上下文关注的人-物交互检测

Tiancai Wang, R. Anwer, M. H. Khan, F. Khan, Yanwei Pang, Ling Shao, Jorma T. Laaksonen
{"title":"基于深度上下文关注的人-物交互检测","authors":"Tiancai Wang, R. Anwer, M. H. Khan, F. Khan, Yanwei Pang, Ling Shao, Jorma T. Laaksonen","doi":"10.1109/ICCV.2019.00579","DOIUrl":null,"url":null,"abstract":"Human-object interaction detection is an important and relatively new class of visual relationship detection tasks, essential for deeper scene understanding. Most existing approaches decompose the problem into object localization and interaction recognition. Despite showing progress, these approaches only rely on the appearances of humans and objects and overlook the available context information, crucial for capturing subtle interactions between them. We propose a contextual attention framework for human-object interaction detection. Our approach leverages context by learning contextually-aware appearance features for human and object instances. The proposed attention module then adaptively selects relevant instance-centric context information to highlight image regions likely to contain human-object interactions. Experiments are performed on three benchmarks: V-COCO, HICO-DET and HCVRD. Our approach outperforms the state-of-the-art on all datasets. On the V-COCO dataset, our method achieves a relative gain of 4.4% in terms of role mean average precision (mAP role ), compared to the existing best approach.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"54 1","pages":"5693-5701"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Deep Contextual Attention for Human-Object Interaction Detection\",\"authors\":\"Tiancai Wang, R. Anwer, M. H. Khan, F. Khan, Yanwei Pang, Ling Shao, Jorma T. Laaksonen\",\"doi\":\"10.1109/ICCV.2019.00579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-object interaction detection is an important and relatively new class of visual relationship detection tasks, essential for deeper scene understanding. Most existing approaches decompose the problem into object localization and interaction recognition. Despite showing progress, these approaches only rely on the appearances of humans and objects and overlook the available context information, crucial for capturing subtle interactions between them. We propose a contextual attention framework for human-object interaction detection. Our approach leverages context by learning contextually-aware appearance features for human and object instances. The proposed attention module then adaptively selects relevant instance-centric context information to highlight image regions likely to contain human-object interactions. Experiments are performed on three benchmarks: V-COCO, HICO-DET and HCVRD. Our approach outperforms the state-of-the-art on all datasets. On the V-COCO dataset, our method achieves a relative gain of 4.4% in terms of role mean average precision (mAP role ), compared to the existing best approach.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"54 1\",\"pages\":\"5693-5701\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

人-物交互检测是一类重要且相对较新的视觉关系检测任务,对于更深入的场景理解至关重要。现有的大多数方法将问题分解为目标定位和交互识别。尽管取得了进展,但这些方法只依赖于人和物体的外观,而忽略了可用的上下文信息,而上下文信息对于捕捉它们之间微妙的相互作用至关重要。我们提出了一个用于人-物交互检测的上下文注意框架。我们的方法通过学习人类和对象实例的上下文感知外观特征来利用上下文。然后,提出的注意力模块自适应地选择相关的以实例为中心的上下文信息,以突出显示可能包含人-对象交互的图像区域。在V-COCO、HICO-DET和HCVRD三个基准上进行了实验。我们的方法在所有数据集上都优于最先进的方法。在V-COCO数据集上,与现有的最佳方法相比,我们的方法在角色平均精度(mAP角色)方面实现了4.4%的相对增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Contextual Attention for Human-Object Interaction Detection
Human-object interaction detection is an important and relatively new class of visual relationship detection tasks, essential for deeper scene understanding. Most existing approaches decompose the problem into object localization and interaction recognition. Despite showing progress, these approaches only rely on the appearances of humans and objects and overlook the available context information, crucial for capturing subtle interactions between them. We propose a contextual attention framework for human-object interaction detection. Our approach leverages context by learning contextually-aware appearance features for human and object instances. The proposed attention module then adaptively selects relevant instance-centric context information to highlight image regions likely to contain human-object interactions. Experiments are performed on three benchmarks: V-COCO, HICO-DET and HCVRD. Our approach outperforms the state-of-the-art on all datasets. On the V-COCO dataset, our method achieves a relative gain of 4.4% in terms of role mean average precision (mAP role ), compared to the existing best approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信