概率测度空间中的分布非线性一致性

A. Bishop, A. Doucet
{"title":"概率测度空间中的分布非线性一致性","authors":"A. Bishop, A. Doucet","doi":"10.3182/20140824-6-ZA-1003.00341","DOIUrl":null,"url":null,"abstract":"Abstract Distributed consensus in the Wasserstein metric space of probability measures is introduced for the first time in this work. It is shown that convergence of the individual agents' measures to a common measure value is guaranteed so long as a weak network connectivity condition is satisfied asymptotically. The common measure achieved asymptotically at each agent is the one closest simultaneously to all initial agent measures in the sense that it minimises a weighted sum of Wasserstein distances between it and all the initial measures. This algorithm has applicability in the field of distributed estimation.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"57 1","pages":"8662-8668"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Distributed nonlinear consensus in the space of probability measures\",\"authors\":\"A. Bishop, A. Doucet\",\"doi\":\"10.3182/20140824-6-ZA-1003.00341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Distributed consensus in the Wasserstein metric space of probability measures is introduced for the first time in this work. It is shown that convergence of the individual agents' measures to a common measure value is guaranteed so long as a weak network connectivity condition is satisfied asymptotically. The common measure achieved asymptotically at each agent is the one closest simultaneously to all initial agent measures in the sense that it minimises a weighted sum of Wasserstein distances between it and all the initial measures. This algorithm has applicability in the field of distributed estimation.\",\"PeriodicalId\":13260,\"journal\":{\"name\":\"IFAC Proceedings Volumes\",\"volume\":\"57 1\",\"pages\":\"8662-8668\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Proceedings Volumes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20140824-6-ZA-1003.00341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.00341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

摘要本文首次引入概率测度的Wasserstein度量空间中的分布式一致性。结果表明,只要弱网络连通性条件渐近满足,个体智能体的测度收敛于一个公共测度值是有保证的。在每个智能体上渐近实现的公共度量是同时最接近所有初始智能体度量的度量,因为它最小化了它与所有初始度量之间的Wasserstein距离的加权和。该算法在分布式估计领域具有一定的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed nonlinear consensus in the space of probability measures
Abstract Distributed consensus in the Wasserstein metric space of probability measures is introduced for the first time in this work. It is shown that convergence of the individual agents' measures to a common measure value is guaranteed so long as a weak network connectivity condition is satisfied asymptotically. The common measure achieved asymptotically at each agent is the one closest simultaneously to all initial agent measures in the sense that it minimises a weighted sum of Wasserstein distances between it and all the initial measures. This algorithm has applicability in the field of distributed estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信