考虑范德华力的偏心缺陷双层石墨烯片的力学分析

IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY
S. Dastjerdi, M. Malikan
{"title":"考虑范德华力的偏心缺陷双层石墨烯片的力学分析","authors":"S. Dastjerdi, M. Malikan","doi":"10.1177/2397791420926067","DOIUrl":null,"url":null,"abstract":"In this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the effect of van der Waals forces has been taken into account in the analysis. In order to implement the nanoscale impact, the nonlocal elasticity theory has been employed. The solution methodology, which is here based on the semi-analytical polynomial method solving technique presented previously by the authors, has been applied and again its efficiency has been demonstrated due to its highly accurate results. Due to the fact that this research has been done for the first time and there is no validation available, the results of the local single layer sheet are compared with ABAQUS software. The effects of some other parameters on the results have been studied such as the value of eccentricity, van der Waals interaction, and nonlocal parameter.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force\",\"authors\":\"S. Dastjerdi, M. Malikan\",\"doi\":\"10.1177/2397791420926067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the effect of van der Waals forces has been taken into account in the analysis. In order to implement the nanoscale impact, the nonlocal elasticity theory has been employed. The solution methodology, which is here based on the semi-analytical polynomial method solving technique presented previously by the authors, has been applied and again its efficiency has been demonstrated due to its highly accurate results. Due to the fact that this research has been done for the first time and there is no validation available, the results of the local single layer sheet are compared with ABAQUS software. The effects of some other parameters on the results have been studied such as the value of eccentricity, van der Waals interaction, and nonlocal parameter.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791420926067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791420926067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

在这篇文章中,我们试图模拟含有基于偏心孔的几何缺陷的双层石墨烯片的非线性弯曲分析。采用一阶剪切变形理论求解控制方程。此外,为了获得大变形,还假定了非线性von Kármán应变场。考虑到双层石墨烯片,在分析中考虑了范德华力的影响。为了实现纳米尺度的冲击,采用了非局部弹性理论。本文的求解方法基于作者先前提出的半解析多项式方法求解技术,并因其高度精确的结果再次证明了其有效性。由于本研究是首次进行,没有验证,因此将局部单层片的结果与ABAQUS软件进行了比较。研究了偏心率、范德华相互作用和非局部参数等参数对结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force
In this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the effect of van der Waals forces has been taken into account in the analysis. In order to implement the nanoscale impact, the nonlocal elasticity theory has been employed. The solution methodology, which is here based on the semi-analytical polynomial method solving technique presented previously by the authors, has been applied and again its efficiency has been demonstrated due to its highly accurate results. Due to the fact that this research has been done for the first time and there is no validation available, the results of the local single layer sheet are compared with ABAQUS software. The effects of some other parameters on the results have been studied such as the value of eccentricity, van der Waals interaction, and nonlocal parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信