{"title":"一种新的树叶识别数据字典学习方法","authors":"S. Ibrahem, Y. M. A. El-Latif, Naglaa M. Reda","doi":"10.5121/SIPIJ.2019.10304","DOIUrl":null,"url":null,"abstract":"Automatic leaf recognition via image processing has been greatly important for a number of professionals, such as botanical taxonomic, environmental protectors, and foresters. Learn an over-complete leaf dictionary is an essential step for leaf image recognition. Big leaf images dimensions and training images number is facing of fast and complete data leaves dictionary. In this work an efficient approach applies to construct over-complete data leaves dictionary to set of big images diminutions based on sparse representation. In the proposed method a new cropped-contour method has used to crop the training image. The experiments are testing using correlation between the sparse representation and data dictionary and with focus on the computing time.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Data Dictionary Learning for Leaf Recognition\",\"authors\":\"S. Ibrahem, Y. M. A. El-Latif, Naglaa M. Reda\",\"doi\":\"10.5121/SIPIJ.2019.10304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic leaf recognition via image processing has been greatly important for a number of professionals, such as botanical taxonomic, environmental protectors, and foresters. Learn an over-complete leaf dictionary is an essential step for leaf image recognition. Big leaf images dimensions and training images number is facing of fast and complete data leaves dictionary. In this work an efficient approach applies to construct over-complete data leaves dictionary to set of big images diminutions based on sparse representation. In the proposed method a new cropped-contour method has used to crop the training image. The experiments are testing using correlation between the sparse representation and data dictionary and with focus on the computing time.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/SIPIJ.2019.10304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/SIPIJ.2019.10304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Data Dictionary Learning for Leaf Recognition
Automatic leaf recognition via image processing has been greatly important for a number of professionals, such as botanical taxonomic, environmental protectors, and foresters. Learn an over-complete leaf dictionary is an essential step for leaf image recognition. Big leaf images dimensions and training images number is facing of fast and complete data leaves dictionary. In this work an efficient approach applies to construct over-complete data leaves dictionary to set of big images diminutions based on sparse representation. In the proposed method a new cropped-contour method has used to crop the training image. The experiments are testing using correlation between the sparse representation and data dictionary and with focus on the computing time.