将非平凡自同构群码的译码速度提高到一个指数因子

Rodolfo Canto Torres, J. Tillich
{"title":"将非平凡自同构群码的译码速度提高到一个指数因子","authors":"Rodolfo Canto Torres, J. Tillich","doi":"10.1109/ISIT.2019.8849628","DOIUrl":null,"url":null,"abstract":"We give an algorithm that is able to speed up the decoding of a code with a non-trivial automorphism group, by summing for the word that has to be decoded, all its entries belonging to a same orbit and decoding the resulting word in a reduced code. For a certain range of parameters, this results in a decoding that is faster by an exponential factor in the codelength when compared to the best algorithms for decoding generic linear codes. This algorithm is then used to break several proposals of public-key cryptosystems based on codes with a non-trivial automorphism group.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"80 1","pages":"1927-1931"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Speeding up decoding a code with a non-trivial automorphism group up to an exponential factor\",\"authors\":\"Rodolfo Canto Torres, J. Tillich\",\"doi\":\"10.1109/ISIT.2019.8849628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an algorithm that is able to speed up the decoding of a code with a non-trivial automorphism group, by summing for the word that has to be decoded, all its entries belonging to a same orbit and decoding the resulting word in a reduced code. For a certain range of parameters, this results in a decoding that is faster by an exponential factor in the codelength when compared to the best algorithms for decoding generic linear codes. This algorithm is then used to break several proposals of public-key cryptosystems based on codes with a non-trivial automorphism group.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"80 1\",\"pages\":\"1927-1931\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们给出了一种算法,它能够加速解码具有非平凡自同构群的编码,通过对需要解码的单词求和,它的所有条目都属于同一轨道,并在一个约简码中解码结果单词。对于一定范围的参数,与解码一般线性代码的最佳算法相比,这将导致解码速度在码长上呈指数因子增长。然后利用该算法对几种基于非平凡自同构群的密码的公钥密码系统方案进行了破解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speeding up decoding a code with a non-trivial automorphism group up to an exponential factor
We give an algorithm that is able to speed up the decoding of a code with a non-trivial automorphism group, by summing for the word that has to be decoded, all its entries belonging to a same orbit and decoding the resulting word in a reduced code. For a certain range of parameters, this results in a decoding that is faster by an exponential factor in the codelength when compared to the best algorithms for decoding generic linear codes. This algorithm is then used to break several proposals of public-key cryptosystems based on codes with a non-trivial automorphism group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信