最小化布尔表达式使用矩阵代数

H. Schwender
{"title":"最小化布尔表达式使用矩阵代数","authors":"H. Schwender","doi":"10.17877/DE290R-265","DOIUrl":null,"url":null,"abstract":"The more variables a logic expression contain, the more complicated is the interpretation of this expression. Since in a statistical sense prime implicants can be interpreted as interactions of binary variables, it is thus advantageous to convert such a logic expression into a disjunctive normal form consisting of prime implicants. In this paper, we present two algorithms based on matrix algebra for the identification of all prime implicants comprised in a logic expression and for the minimization of this set of prime implicants.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2007-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Minimization of Boolean expressions using matrix algebra\",\"authors\":\"H. Schwender\",\"doi\":\"10.17877/DE290R-265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The more variables a logic expression contain, the more complicated is the interpretation of this expression. Since in a statistical sense prime implicants can be interpreted as interactions of binary variables, it is thus advantageous to convert such a logic expression into a disjunctive normal form consisting of prime implicants. In this paper, we present two algorithms based on matrix algebra for the identification of all prime implicants comprised in a logic expression and for the minimization of this set of prime implicants.\",\"PeriodicalId\":10841,\"journal\":{\"name\":\"CTIT technical reports series\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CTIT technical reports series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17877/DE290R-265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

一个逻辑表达式包含的变量越多,该表达式的解释就越复杂。由于在统计意义上素数蕴涵可以解释为二元变量的相互作用,因此将这样的逻辑表达式转换为由素数蕴涵组成的析取范式是有利的。在本文中,我们提出了两种基于矩阵代数的算法,用于识别逻辑表达式中包含的所有素数蕴涵和最小化该素数蕴涵集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimization of Boolean expressions using matrix algebra
The more variables a logic expression contain, the more complicated is the interpretation of this expression. Since in a statistical sense prime implicants can be interpreted as interactions of binary variables, it is thus advantageous to convert such a logic expression into a disjunctive normal form consisting of prime implicants. In this paper, we present two algorithms based on matrix algebra for the identification of all prime implicants comprised in a logic expression and for the minimization of this set of prime implicants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信