学习深度完成的联合2D-3D表示

Yuxiang Chen, Binh Yang, Ming Liang, R. Urtasun
{"title":"学习深度完成的联合2D-3D表示","authors":"Yuxiang Chen, Binh Yang, Ming Liang, R. Urtasun","doi":"10.1109/ICCV.2019.01012","DOIUrl":null,"url":null,"abstract":"In this paper, we tackle the problem of depth completion from RGBD data. Towards this goal, we design a simple yet effective neural network block that learns to extract joint 2D and 3D features. Specifically, the block consists of two domain-specific sub-networks that apply 2D convolution on image pixels and continuous convolution on 3D points, with their output features fused in image space. We build the depth completion network simply by stacking the proposed block, which has the advantage of learning hierarchical representations that are fully fused between 2D and 3D spaces at multiple levels. We demonstrate the effectiveness of our approach on the challenging KITTI depth completion benchmark and show that our approach outperforms the state-of-the-art.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"21 1","pages":"10022-10031"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"Learning Joint 2D-3D Representations for Depth Completion\",\"authors\":\"Yuxiang Chen, Binh Yang, Ming Liang, R. Urtasun\",\"doi\":\"10.1109/ICCV.2019.01012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we tackle the problem of depth completion from RGBD data. Towards this goal, we design a simple yet effective neural network block that learns to extract joint 2D and 3D features. Specifically, the block consists of two domain-specific sub-networks that apply 2D convolution on image pixels and continuous convolution on 3D points, with their output features fused in image space. We build the depth completion network simply by stacking the proposed block, which has the advantage of learning hierarchical representations that are fully fused between 2D and 3D spaces at multiple levels. We demonstrate the effectiveness of our approach on the challenging KITTI depth completion benchmark and show that our approach outperforms the state-of-the-art.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"21 1\",\"pages\":\"10022-10031\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.01012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.01012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

摘要

本文主要研究了基于RGBD数据的深度补全问题。为了实现这一目标,我们设计了一个简单而有效的神经网络块,学习提取关节的2D和3D特征。具体来说,该块由两个特定于领域的子网络组成,它们对图像像素进行二维卷积,对3D点进行连续卷积,并将其输出特征融合在图像空间中。我们通过简单地堆叠所提出的块来构建深度补全网络,其优点是学习在多层2D和3D空间之间完全融合的分层表示。我们证明了我们的方法在具有挑战性的KITTI深度完井基准上的有效性,并表明我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Joint 2D-3D Representations for Depth Completion
In this paper, we tackle the problem of depth completion from RGBD data. Towards this goal, we design a simple yet effective neural network block that learns to extract joint 2D and 3D features. Specifically, the block consists of two domain-specific sub-networks that apply 2D convolution on image pixels and continuous convolution on 3D points, with their output features fused in image space. We build the depth completion network simply by stacking the proposed block, which has the advantage of learning hierarchical representations that are fully fused between 2D and 3D spaces at multiple levels. We demonstrate the effectiveness of our approach on the challenging KITTI depth completion benchmark and show that our approach outperforms the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信