作为特征值问题的音高量化

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Peter beim Graben, Maria Mannone
{"title":"作为特征值问题的音高量化","authors":"Peter beim Graben, Maria Mannone","doi":"10.1080/17459737.2020.1763488","DOIUrl":null,"url":null,"abstract":"How can discrete pitches and chords emerge from the continuum of sound? Using a quantum cognition model of tonal music, we prove that the associated Schrödinger equation in Fourier space is invariant under continuous pitch transpositions. However, this symmetry is broken in the case of transpositions of chords, entailing a discrete cyclic group as transposition symmetry. Our research relates quantum mechanics with music and is consistent with music theory and seminal insights by Hermann von Helmholtz.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Musical pitch quantization as an eigenvalue problem\",\"authors\":\"Peter beim Graben, Maria Mannone\",\"doi\":\"10.1080/17459737.2020.1763488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How can discrete pitches and chords emerge from the continuum of sound? Using a quantum cognition model of tonal music, we prove that the associated Schrödinger equation in Fourier space is invariant under continuous pitch transpositions. However, this symmetry is broken in the case of transpositions of chords, entailing a discrete cyclic group as transposition symmetry. Our research relates quantum mechanics with music and is consistent with music theory and seminal insights by Hermann von Helmholtz.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2020.1763488\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2020.1763488","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 7

摘要

离散的音高和和弦是如何从连续的声音中出现的?利用调性音乐的量子认知模型,证明了连续音高变换下傅里叶空间中相关的Schrödinger方程是不变的。然而,这种对称在和弦调换的情况下被打破,需要一个离散的循环群作为调换对称。我们的研究将量子力学与音乐联系起来,这与赫尔曼·冯·亥姆霍兹的音乐理论和开创性见解是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Musical pitch quantization as an eigenvalue problem
How can discrete pitches and chords emerge from the continuum of sound? Using a quantum cognition model of tonal music, we prove that the associated Schrödinger equation in Fourier space is invariant under continuous pitch transpositions. However, this symmetry is broken in the case of transpositions of chords, entailing a discrete cyclic group as transposition symmetry. Our research relates quantum mechanics with music and is consistent with music theory and seminal insights by Hermann von Helmholtz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信