Rattikorn Sombutkaew, Y. Kumsang, Orachat Chitsobuk
{"title":"肝脏超声压缩的模糊c均值聚类自适应量化","authors":"Rattikorn Sombutkaew, Y. Kumsang, Orachat Chitsobuk","doi":"10.1109/ICCAS.2014.6987834","DOIUrl":null,"url":null,"abstract":"With the massive increment of patients' medical information and images also limitation in transmission bandwidth, it is a challenging task for developing efficient medical information and image encoding techniques for digital picture archiving and communications (PACS). In order to achieve higher encoding efficiency, this research proposes adaptive quantization via fuzzy classified priority mapping. Image statistical characteristics are used as key features for Fuzzy C-mean clustering. The derived priority map is used to identify levels of importance for each image area. The significant candidates of irregular liver tissues, which need special doctor's attention, will be assigned with higher priority than those from the regular ones. The higher the priority, the greater the number of bits assigned for encoding. An analysis of suitable quantization step size has been conducted. With the selection of appropriate quantization parameters for each priority level, the blocking artifacts can be greatly reduced. This results in quality improvement of the reconstructed images while the compression ratio remains reasonably high.","PeriodicalId":6525,"journal":{"name":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","volume":"95 1","pages":"521-524"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive quantization with Fuzzy C-mean clustering for liver ultrasound compression\",\"authors\":\"Rattikorn Sombutkaew, Y. Kumsang, Orachat Chitsobuk\",\"doi\":\"10.1109/ICCAS.2014.6987834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the massive increment of patients' medical information and images also limitation in transmission bandwidth, it is a challenging task for developing efficient medical information and image encoding techniques for digital picture archiving and communications (PACS). In order to achieve higher encoding efficiency, this research proposes adaptive quantization via fuzzy classified priority mapping. Image statistical characteristics are used as key features for Fuzzy C-mean clustering. The derived priority map is used to identify levels of importance for each image area. The significant candidates of irregular liver tissues, which need special doctor's attention, will be assigned with higher priority than those from the regular ones. The higher the priority, the greater the number of bits assigned for encoding. An analysis of suitable quantization step size has been conducted. With the selection of appropriate quantization parameters for each priority level, the blocking artifacts can be greatly reduced. This results in quality improvement of the reconstructed images while the compression ratio remains reasonably high.\",\"PeriodicalId\":6525,\"journal\":{\"name\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"volume\":\"95 1\",\"pages\":\"521-524\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2014.6987834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2014.6987834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive quantization with Fuzzy C-mean clustering for liver ultrasound compression
With the massive increment of patients' medical information and images also limitation in transmission bandwidth, it is a challenging task for developing efficient medical information and image encoding techniques for digital picture archiving and communications (PACS). In order to achieve higher encoding efficiency, this research proposes adaptive quantization via fuzzy classified priority mapping. Image statistical characteristics are used as key features for Fuzzy C-mean clustering. The derived priority map is used to identify levels of importance for each image area. The significant candidates of irregular liver tissues, which need special doctor's attention, will be assigned with higher priority than those from the regular ones. The higher the priority, the greater the number of bits assigned for encoding. An analysis of suitable quantization step size has been conducted. With the selection of appropriate quantization parameters for each priority level, the blocking artifacts can be greatly reduced. This results in quality improvement of the reconstructed images while the compression ratio remains reasonably high.