{"title":"蜂群之声。蜂群机器人运动的听觉描述","authors":"Maria Mannone, V. Seidita, A. Chella","doi":"10.1145/3596203","DOIUrl":null,"url":null,"abstract":"Movements of robots in a swarm can be mapped to sounds, highlighting the group behavior through the coordinated and simultaneous variations of musical parameters across time. The vice versa is also possible: sound parameters can be mapped to robotic motion parameters, giving instructions through sound. In this article, we first develop a theoretical framework to relate musical parameters such as pitch, timbre, loudness, and articulation (for each time) with robotic parameters such as position, identity, motor status, and sensor status. We propose a definition of musical spaces as Hilbert spaces, and musical paths between parameters as elements of bigroupoids, generalizing existing conceptions of musical spaces. The use of Hilbert spaces allows us to build up quantum representations of musical states, inheriting quantum computing resources, already used for robotic swarms. We present the theoretical framework and then some case studies as toy examples. In particular, we discuss a 2D video and matrix simulation with two robo-caterpillars; a 2D simulation of 10 robo-ants with Webots; a 3D simulation of three robo-fish in an underwater search&rescue mission.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"33 7 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sound of Swarm. Auditory Description of Swarm Robotic Movements\",\"authors\":\"Maria Mannone, V. Seidita, A. Chella\",\"doi\":\"10.1145/3596203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Movements of robots in a swarm can be mapped to sounds, highlighting the group behavior through the coordinated and simultaneous variations of musical parameters across time. The vice versa is also possible: sound parameters can be mapped to robotic motion parameters, giving instructions through sound. In this article, we first develop a theoretical framework to relate musical parameters such as pitch, timbre, loudness, and articulation (for each time) with robotic parameters such as position, identity, motor status, and sensor status. We propose a definition of musical spaces as Hilbert spaces, and musical paths between parameters as elements of bigroupoids, generalizing existing conceptions of musical spaces. The use of Hilbert spaces allows us to build up quantum representations of musical states, inheriting quantum computing resources, already used for robotic swarms. We present the theoretical framework and then some case studies as toy examples. In particular, we discuss a 2D video and matrix simulation with two robo-caterpillars; a 2D simulation of 10 robo-ants with Webots; a 3D simulation of three robo-fish in an underwater search&rescue mission.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":\"33 7 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3596203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3596203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
The Sound of Swarm. Auditory Description of Swarm Robotic Movements
Movements of robots in a swarm can be mapped to sounds, highlighting the group behavior through the coordinated and simultaneous variations of musical parameters across time. The vice versa is also possible: sound parameters can be mapped to robotic motion parameters, giving instructions through sound. In this article, we first develop a theoretical framework to relate musical parameters such as pitch, timbre, loudness, and articulation (for each time) with robotic parameters such as position, identity, motor status, and sensor status. We propose a definition of musical spaces as Hilbert spaces, and musical paths between parameters as elements of bigroupoids, generalizing existing conceptions of musical spaces. The use of Hilbert spaces allows us to build up quantum representations of musical states, inheriting quantum computing resources, already used for robotic swarms. We present the theoretical framework and then some case studies as toy examples. In particular, we discuss a 2D video and matrix simulation with two robo-caterpillars; a 2D simulation of 10 robo-ants with Webots; a 3D simulation of three robo-fish in an underwater search&rescue mission.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.