利用新的地层测试和采样技术,为非常规储层表征开辟了新的领域和记录

M. Kelkouli, John Zaggas, Y. Boudiba, Abderrahmane Akham, Riad Boumahrat, S. Ferraz, Sofiane Bellabiod
{"title":"利用新的地层测试和采样技术,为非常规储层表征开辟了新的领域和记录","authors":"M. Kelkouli, John Zaggas, Y. Boudiba, Abderrahmane Akham, Riad Boumahrat, S. Ferraz, Sofiane Bellabiod","doi":"10.2118/197281-ms","DOIUrl":null,"url":null,"abstract":"\n An exploration deep well crossing two reservoirs with different quality and properties, having an objective of: Fluid identification and sampling in extremely tight section (∼0.02mD/cP mobility) as well as in another section that is suspected to be depleted with very high overbalance exceeding legacy tools, knowing the hydrostatic pressure being ∼9500psia.\n Wireline formation tester was run using single probe, leading to 65% of tight stations, the rest were valid but with very low mobility. This exposes the tool to an increasing pressure differential exceeding its physical limit and leading to damaging it. This makes any further analysis impossible. The toolstring was upgraded with latest technology of WFT, that is a merge between probe based and dual packer modules. This new technology was designed with extreme environments in mind, that allows sampling in all mobility range from extreme tight to very high with its capability of holding up to 8000psia differential pressure.\n In the job described here, some of the tested reservoir sections were differentially depleted, something unknown to customer as this was an exploration environment. Since this information were not know even after the completion of the first and second run, a third run was carried out with the objective of re-investigating the same depths performed by the single probe, but this time 3D Radial Probe was used instead. This gave the advantage of taking the pressure down to almost 0 psia. The potential hydrocarbon zone which was bypassed (seen dry with single probe) was then tested with 3D radial probe giving a reservoir pressure of 2864psia with a mobility of ∼300mD/cP where gas condensate was identified and captured. Now for the extreme tight reservoir section, in combination with high hydrostatic, the mechanical limitation of traditional tools remains the same making sampling and/or fluid ID impossible. An attempt was made using the 3D radial probe, and despite the extreme low mobility ∼0.02mD/cP, an identification of the reservoir fluid (water) was successfully completed without any issue.\n The use of 3D Radial Probe technology gave a completely different picture from what was expected, enabled the completion of all objectives and made the impossible (with conventional technology) possibly and easily achievable. This resulted in changing the well strategies accordingly and complete the well successfully. The new technology made the testing of unconventional reservoirs a reality.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Breaking New Grounds and Records for Unconventional Reservoirs Characterization Using the New Formation Testing and Sampling Technology\",\"authors\":\"M. Kelkouli, John Zaggas, Y. Boudiba, Abderrahmane Akham, Riad Boumahrat, S. Ferraz, Sofiane Bellabiod\",\"doi\":\"10.2118/197281-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An exploration deep well crossing two reservoirs with different quality and properties, having an objective of: Fluid identification and sampling in extremely tight section (∼0.02mD/cP mobility) as well as in another section that is suspected to be depleted with very high overbalance exceeding legacy tools, knowing the hydrostatic pressure being ∼9500psia.\\n Wireline formation tester was run using single probe, leading to 65% of tight stations, the rest were valid but with very low mobility. This exposes the tool to an increasing pressure differential exceeding its physical limit and leading to damaging it. This makes any further analysis impossible. The toolstring was upgraded with latest technology of WFT, that is a merge between probe based and dual packer modules. This new technology was designed with extreme environments in mind, that allows sampling in all mobility range from extreme tight to very high with its capability of holding up to 8000psia differential pressure.\\n In the job described here, some of the tested reservoir sections were differentially depleted, something unknown to customer as this was an exploration environment. Since this information were not know even after the completion of the first and second run, a third run was carried out with the objective of re-investigating the same depths performed by the single probe, but this time 3D Radial Probe was used instead. This gave the advantage of taking the pressure down to almost 0 psia. The potential hydrocarbon zone which was bypassed (seen dry with single probe) was then tested with 3D radial probe giving a reservoir pressure of 2864psia with a mobility of ∼300mD/cP where gas condensate was identified and captured. Now for the extreme tight reservoir section, in combination with high hydrostatic, the mechanical limitation of traditional tools remains the same making sampling and/or fluid ID impossible. An attempt was made using the 3D radial probe, and despite the extreme low mobility ∼0.02mD/cP, an identification of the reservoir fluid (water) was successfully completed without any issue.\\n The use of 3D Radial Probe technology gave a completely different picture from what was expected, enabled the completion of all objectives and made the impossible (with conventional technology) possibly and easily achievable. This resulted in changing the well strategies accordingly and complete the well successfully. The new technology made the testing of unconventional reservoirs a reality.\",\"PeriodicalId\":11061,\"journal\":{\"name\":\"Day 1 Mon, November 11, 2019\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, November 11, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197281-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 11, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197281-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一个勘探深井,穿过两个具有不同质量和性质的储层,其目标是:在极致密段(~ 0.02mD/cP流度)和另一个被怀疑因超平衡超过传统工具而枯竭的段进行流体识别和采样,知道静水压力为~ 9500psia。使用单探头下入电缆地层测试器,65%的储层封紧,其余的有效,但流动性非常低。这将使工具暴露在超过其物理极限的压力差中,从而导致工具损坏。这使得进一步的分析变得不可能。工具串采用最新的WFT技术进行了升级,该技术是基于探头和双封隔器模块的融合。这项新技术在设计时考虑了极端环境,允许在从极紧到极高的所有流动性范围内采样,其能力可承受高达8000psia的压差。在这里描述的作业中,一些被测试的储层段被差异耗尽,这是客户不知道的,因为这是一个勘探环境。由于在完成第一次和第二次下入后仍不知道这些信息,因此进行了第三次下入,目的是重新调查单探头所完成的相同深度,但这次使用了3D径向探头。这样做的好处是将压力降低到几乎0 psia。然后用三维径向探针测试绕过的潜在油气带(用单探针观察到是干的),油藏压力为2864psia,流度为~ 300mD/cP,在那里发现并捕获了凝析气。现在,对于极度致密的储层段,结合高流体静力学,传统工具的机械限制仍然存在,使得采样和/或流体内径无法实现。尝试使用3D径向探头,尽管流动性极低(0.02mD/cP),但成功地完成了储层流体(水)的识别,没有任何问题。3D径向探头技术的使用提供了与预期完全不同的画面,使所有目标得以完成,并使传统技术不可能实现的事情变得可能且容易实现。这导致了相应的井策略改变,并成功完井。这项新技术使非常规油藏的测试成为现实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breaking New Grounds and Records for Unconventional Reservoirs Characterization Using the New Formation Testing and Sampling Technology
An exploration deep well crossing two reservoirs with different quality and properties, having an objective of: Fluid identification and sampling in extremely tight section (∼0.02mD/cP mobility) as well as in another section that is suspected to be depleted with very high overbalance exceeding legacy tools, knowing the hydrostatic pressure being ∼9500psia. Wireline formation tester was run using single probe, leading to 65% of tight stations, the rest were valid but with very low mobility. This exposes the tool to an increasing pressure differential exceeding its physical limit and leading to damaging it. This makes any further analysis impossible. The toolstring was upgraded with latest technology of WFT, that is a merge between probe based and dual packer modules. This new technology was designed with extreme environments in mind, that allows sampling in all mobility range from extreme tight to very high with its capability of holding up to 8000psia differential pressure. In the job described here, some of the tested reservoir sections were differentially depleted, something unknown to customer as this was an exploration environment. Since this information were not know even after the completion of the first and second run, a third run was carried out with the objective of re-investigating the same depths performed by the single probe, but this time 3D Radial Probe was used instead. This gave the advantage of taking the pressure down to almost 0 psia. The potential hydrocarbon zone which was bypassed (seen dry with single probe) was then tested with 3D radial probe giving a reservoir pressure of 2864psia with a mobility of ∼300mD/cP where gas condensate was identified and captured. Now for the extreme tight reservoir section, in combination with high hydrostatic, the mechanical limitation of traditional tools remains the same making sampling and/or fluid ID impossible. An attempt was made using the 3D radial probe, and despite the extreme low mobility ∼0.02mD/cP, an identification of the reservoir fluid (water) was successfully completed without any issue. The use of 3D Radial Probe technology gave a completely different picture from what was expected, enabled the completion of all objectives and made the impossible (with conventional technology) possibly and easily achievable. This resulted in changing the well strategies accordingly and complete the well successfully. The new technology made the testing of unconventional reservoirs a reality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信