{"title":"利用干预策略控制疟疾传播的数学模型","authors":"Fekadu Tadege Kobe","doi":"10.11648/j.pamj.20200906.11","DOIUrl":null,"url":null,"abstract":"This paper proposes and analyses a basic deterministic mathematical model to investigate Simulation for controlling the spread of malaria Diseases Transmission dynamics. The model has seven non-linear differential equations which describe the control of malaria with two state variables for mosquito’s populations and five state variables for human’s population. To represent the classification of human population we have included protection and treatment compartments to the basic SIR epidemic model and extended it to SPITR model and to introduce the new SPITR modified model by adding vaccination for the transmission dynamics of malaria with four time dependent control measures in Ethiopia Insecticide treated bed nets (ITNS), Treatments, Indoor Residual Spray (IRs) and Intermittent preventive treatment of malaria in pregnancy (IPTP). The models are analyzed qualitatively to determine criteria for control of a malaria transmission dynamics and are used to calculate the basic reproduction R0. The equilibria of malaria models are determined. In addition to having a disease-free equilibrium, which is globally asymptotically stable when the R0<1, the basic malaria model manifest one's possession of (a quality of) the phenomenon of backward bifurcation where a stable disease-free equilibrium co-exists (at the same time) with a stable endemic equilibrium for a certain range of associated reproduction number less than one. The results also designing the effects of some model parameters, the infection rate and biting rate. The numerical analysis and numerical simulation results of the model suggested that the most effective strategies for controlling or eradicating the spread of malaria were suggest using insecticide treated bed nets, indoor residual spraying, prompt effective diagnosis and treatment of infected individuals with vaccination is more effective for children.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":"1 1","pages":"101"},"PeriodicalIF":0.2000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Mathematical Model of Controlling the Spread of Malaria Disease Using Intervention Strategies\",\"authors\":\"Fekadu Tadege Kobe\",\"doi\":\"10.11648/j.pamj.20200906.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes and analyses a basic deterministic mathematical model to investigate Simulation for controlling the spread of malaria Diseases Transmission dynamics. The model has seven non-linear differential equations which describe the control of malaria with two state variables for mosquito’s populations and five state variables for human’s population. To represent the classification of human population we have included protection and treatment compartments to the basic SIR epidemic model and extended it to SPITR model and to introduce the new SPITR modified model by adding vaccination for the transmission dynamics of malaria with four time dependent control measures in Ethiopia Insecticide treated bed nets (ITNS), Treatments, Indoor Residual Spray (IRs) and Intermittent preventive treatment of malaria in pregnancy (IPTP). The models are analyzed qualitatively to determine criteria for control of a malaria transmission dynamics and are used to calculate the basic reproduction R0. The equilibria of malaria models are determined. In addition to having a disease-free equilibrium, which is globally asymptotically stable when the R0<1, the basic malaria model manifest one's possession of (a quality of) the phenomenon of backward bifurcation where a stable disease-free equilibrium co-exists (at the same time) with a stable endemic equilibrium for a certain range of associated reproduction number less than one. The results also designing the effects of some model parameters, the infection rate and biting rate. The numerical analysis and numerical simulation results of the model suggested that the most effective strategies for controlling or eradicating the spread of malaria were suggest using insecticide treated bed nets, indoor residual spraying, prompt effective diagnosis and treatment of infected individuals with vaccination is more effective for children.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"101\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.pamj.20200906.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.pamj.20200906.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Mathematical Model of Controlling the Spread of Malaria Disease Using Intervention Strategies
This paper proposes and analyses a basic deterministic mathematical model to investigate Simulation for controlling the spread of malaria Diseases Transmission dynamics. The model has seven non-linear differential equations which describe the control of malaria with two state variables for mosquito’s populations and five state variables for human’s population. To represent the classification of human population we have included protection and treatment compartments to the basic SIR epidemic model and extended it to SPITR model and to introduce the new SPITR modified model by adding vaccination for the transmission dynamics of malaria with four time dependent control measures in Ethiopia Insecticide treated bed nets (ITNS), Treatments, Indoor Residual Spray (IRs) and Intermittent preventive treatment of malaria in pregnancy (IPTP). The models are analyzed qualitatively to determine criteria for control of a malaria transmission dynamics and are used to calculate the basic reproduction R0. The equilibria of malaria models are determined. In addition to having a disease-free equilibrium, which is globally asymptotically stable when the R0<1, the basic malaria model manifest one's possession of (a quality of) the phenomenon of backward bifurcation where a stable disease-free equilibrium co-exists (at the same time) with a stable endemic equilibrium for a certain range of associated reproduction number less than one. The results also designing the effects of some model parameters, the infection rate and biting rate. The numerical analysis and numerical simulation results of the model suggested that the most effective strategies for controlling or eradicating the spread of malaria were suggest using insecticide treated bed nets, indoor residual spraying, prompt effective diagnosis and treatment of infected individuals with vaccination is more effective for children.
期刊介绍:
The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.