P. Amos, H. Louis, K. Adegoke, E. A. Eno, Akakuru Ozioma Udochukwu, T. O. Magub
{"title":"Cu/Cu基电极电化学还原CO2机理研究进展","authors":"P. Amos, H. Louis, K. Adegoke, E. A. Eno, Akakuru Ozioma Udochukwu, T. O. Magub","doi":"10.26655/AJNANOMAT.2018.9.2","DOIUrl":null,"url":null,"abstract":"Interestingly, copper has been identified as an ideal metal catalyst for an industrial scale electrochemical reduction of CO2 to various value-added chemicals relative to other metal catalysts reported so far. This is due to the fact that copper and copper-based materials have the potential to convert CO2 to oxygenates such as ethanol, methanol, formates etc. and hydrocarbons such as ethane, methane etc. Mechanistic details on how these products are formed on the catalyst-electrolyte interphase during the reduction process have remained relatively uncovered. This review, therefore, seeks to uncover the mechanism of electrochemical reduction of CO2 on Cu/Cu based electrodes, factors that affect catalytic activity and selectivity for these electrodes as reported in the various literature. This paper is therefore organized as follows: section 1 covers the introduction; an overview of some basic concepts in electrochemical CO2 reduction (ECR) was discussed in section 2, experimental studies were discussed in section 3, and finally the conclusion.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Understanding the Mechanism of Electrochemical Reduction of CO2 Using Cu/Cu-Based Electrodes: A Review\",\"authors\":\"P. Amos, H. Louis, K. Adegoke, E. A. Eno, Akakuru Ozioma Udochukwu, T. O. Magub\",\"doi\":\"10.26655/AJNANOMAT.2018.9.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interestingly, copper has been identified as an ideal metal catalyst for an industrial scale electrochemical reduction of CO2 to various value-added chemicals relative to other metal catalysts reported so far. This is due to the fact that copper and copper-based materials have the potential to convert CO2 to oxygenates such as ethanol, methanol, formates etc. and hydrocarbons such as ethane, methane etc. Mechanistic details on how these products are formed on the catalyst-electrolyte interphase during the reduction process have remained relatively uncovered. This review, therefore, seeks to uncover the mechanism of electrochemical reduction of CO2 on Cu/Cu based electrodes, factors that affect catalytic activity and selectivity for these electrodes as reported in the various literature. This paper is therefore organized as follows: section 1 covers the introduction; an overview of some basic concepts in electrochemical CO2 reduction (ECR) was discussed in section 2, experimental studies were discussed in section 3, and finally the conclusion.\",\"PeriodicalId\":8523,\"journal\":{\"name\":\"Asian Journal of Nanoscience and Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Nanoscience and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26655/AJNANOMAT.2018.9.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Nanoscience and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26655/AJNANOMAT.2018.9.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding the Mechanism of Electrochemical Reduction of CO2 Using Cu/Cu-Based Electrodes: A Review
Interestingly, copper has been identified as an ideal metal catalyst for an industrial scale electrochemical reduction of CO2 to various value-added chemicals relative to other metal catalysts reported so far. This is due to the fact that copper and copper-based materials have the potential to convert CO2 to oxygenates such as ethanol, methanol, formates etc. and hydrocarbons such as ethane, methane etc. Mechanistic details on how these products are formed on the catalyst-electrolyte interphase during the reduction process have remained relatively uncovered. This review, therefore, seeks to uncover the mechanism of electrochemical reduction of CO2 on Cu/Cu based electrodes, factors that affect catalytic activity and selectivity for these electrodes as reported in the various literature. This paper is therefore organized as follows: section 1 covers the introduction; an overview of some basic concepts in electrochemical CO2 reduction (ECR) was discussed in section 2, experimental studies were discussed in section 3, and finally the conclusion.