{"title":"某些导数图的合流数","authors":"J. Kok, J. Shiny","doi":"10.2478/ausi-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract This paper furthers the study on the confluence number of a graph. In particular results for certain derivative graphs such as the line graph of trees, cactus graphs, linear Jaco graphs and novel graph operations are reported.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"65 1","pages":"21 - 38"},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Confluence number of certain derivative graphs\",\"authors\":\"J. Kok, J. Shiny\",\"doi\":\"10.2478/ausi-2021-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper furthers the study on the confluence number of a graph. In particular results for certain derivative graphs such as the line graph of trees, cactus graphs, linear Jaco graphs and novel graph operations are reported.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"65 1\",\"pages\":\"21 - 38\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2021-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract This paper furthers the study on the confluence number of a graph. In particular results for certain derivative graphs such as the line graph of trees, cactus graphs, linear Jaco graphs and novel graph operations are reported.