基于无机纳米复合材料的锂离子插层电流生成正极材料研究

O. Balaban, N. Mitina, A. Zaichenko, O. Izhyk, B. Venhryn, A. Andrushchak
{"title":"基于无机纳米复合材料的锂离子插层电流生成正极材料研究","authors":"O. Balaban, N. Mitina, A. Zaichenko, O. Izhyk, B. Venhryn, A. Andrushchak","doi":"10.1109/NAP51885.2021.9568534","DOIUrl":null,"url":null,"abstract":"This work develops a new approach to the synthesis of nanocomposites and their study as effective materials for lithium current sources. This paper proposes a unique method that allows obtaining stable composite materials in which nanosized MoS2 particles are fixed in the pores of SiO2. To obtain nanocomposites with preset morphological characteristics, the method of hydrothermal synthesis is used, followed by modification of the surface of nanoparticles with functional polymers via polymerization initiated from the particle surface. TEM, impedance spectroscopy, and computer simulation of an equivalent electrical schema are used to characterize such materials before and after grafting a functional polymer shell onto their surface. The prospects of using synthesized composites as cathode materials of lithium current sources, as well as the possibility of controlling the structure and size of the inorganic nucleus and a functional polymer shell, are proved. The kinetics and thermodynamics of Li+-intercalation current generation are studied.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"73 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promising Cathode Material Based on Inorganic Nanocomposites for Li+-intercalation Current Generation\",\"authors\":\"O. Balaban, N. Mitina, A. Zaichenko, O. Izhyk, B. Venhryn, A. Andrushchak\",\"doi\":\"10.1109/NAP51885.2021.9568534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops a new approach to the synthesis of nanocomposites and their study as effective materials for lithium current sources. This paper proposes a unique method that allows obtaining stable composite materials in which nanosized MoS2 particles are fixed in the pores of SiO2. To obtain nanocomposites with preset morphological characteristics, the method of hydrothermal synthesis is used, followed by modification of the surface of nanoparticles with functional polymers via polymerization initiated from the particle surface. TEM, impedance spectroscopy, and computer simulation of an equivalent electrical schema are used to characterize such materials before and after grafting a functional polymer shell onto their surface. The prospects of using synthesized composites as cathode materials of lithium current sources, as well as the possibility of controlling the structure and size of the inorganic nucleus and a functional polymer shell, are proved. The kinetics and thermodynamics of Li+-intercalation current generation are studied.\",\"PeriodicalId\":6735,\"journal\":{\"name\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"volume\":\"73 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAP51885.2021.9568534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作为纳米复合材料的合成及其作为锂电流源有效材料的研究开辟了一条新途径。本文提出了一种独特的方法,可以获得稳定的复合材料,其中纳米二硫化钼颗粒固定在SiO2的孔中。为了获得具有预定形态特征的纳米复合材料,采用水热合成的方法,然后通过粒子表面引发聚合,用功能聚合物修饰纳米颗粒的表面。TEM,阻抗谱和等效电图式的计算机模拟被用来表征这些材料在将功能聚合物外壳接枝到其表面之前和之后的特征。证明了合成复合材料作为锂电流源正极材料的前景,以及控制无机核和功能聚合物壳的结构和尺寸的可能性。研究了Li+插层电流产生的动力学和热力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Promising Cathode Material Based on Inorganic Nanocomposites for Li+-intercalation Current Generation
This work develops a new approach to the synthesis of nanocomposites and their study as effective materials for lithium current sources. This paper proposes a unique method that allows obtaining stable composite materials in which nanosized MoS2 particles are fixed in the pores of SiO2. To obtain nanocomposites with preset morphological characteristics, the method of hydrothermal synthesis is used, followed by modification of the surface of nanoparticles with functional polymers via polymerization initiated from the particle surface. TEM, impedance spectroscopy, and computer simulation of an equivalent electrical schema are used to characterize such materials before and after grafting a functional polymer shell onto their surface. The prospects of using synthesized composites as cathode materials of lithium current sources, as well as the possibility of controlling the structure and size of the inorganic nucleus and a functional polymer shell, are proved. The kinetics and thermodynamics of Li+-intercalation current generation are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信