{"title":"非线性机器学习模型差分表达式分析的潜在局限性","authors":"G. Sabbatini, L. Manganaro","doi":"10.14806/ej.28.0.1035","DOIUrl":null,"url":null,"abstract":"Recently, there has been a growing interest in bioinformatics toward the adoption of increasingly complex machine learning models for the analysis of next-generation sequencing data with the goal of disease subtyping (i.e., patient stratification based on molecular features) or risk-based classification for specific endpoints, such as survival. With gene-expression data, a common approach consists in characterising the emerging groups by exploiting a differential expression analysis, which selects relevant gene sets coupled with pathway enrichment analysis, providing an insight into the underlying biological processes. However, when non-linear machine learning models are involved, differential expression analysis could be limiting since patient groupings identified by the model could be based on a set of genes that are hidden to differential expression due to its linear nature, affecting subsequent biological characterisation and validation. The aim of this study is to provide a proof-of-concept example demonstrating such a limitation. Moreover, we suggest that this issue could be overcome by the adoption of the innovative paradigm of eXplainable Artificial Intelligence, which consists in building an additional explainer to get a trustworthy interpretation of the model outputs and building a reliable set of genes characterising each group, preserving also non-linear relations, to be used for downstream analysis and validation.","PeriodicalId":72893,"journal":{"name":"EMBnet.journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On potential limitations of differential expression analysis with non-linear machine learning models\",\"authors\":\"G. Sabbatini, L. Manganaro\",\"doi\":\"10.14806/ej.28.0.1035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there has been a growing interest in bioinformatics toward the adoption of increasingly complex machine learning models for the analysis of next-generation sequencing data with the goal of disease subtyping (i.e., patient stratification based on molecular features) or risk-based classification for specific endpoints, such as survival. With gene-expression data, a common approach consists in characterising the emerging groups by exploiting a differential expression analysis, which selects relevant gene sets coupled with pathway enrichment analysis, providing an insight into the underlying biological processes. However, when non-linear machine learning models are involved, differential expression analysis could be limiting since patient groupings identified by the model could be based on a set of genes that are hidden to differential expression due to its linear nature, affecting subsequent biological characterisation and validation. The aim of this study is to provide a proof-of-concept example demonstrating such a limitation. Moreover, we suggest that this issue could be overcome by the adoption of the innovative paradigm of eXplainable Artificial Intelligence, which consists in building an additional explainer to get a trustworthy interpretation of the model outputs and building a reliable set of genes characterising each group, preserving also non-linear relations, to be used for downstream analysis and validation.\",\"PeriodicalId\":72893,\"journal\":{\"name\":\"EMBnet.journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBnet.journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14806/ej.28.0.1035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBnet.journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14806/ej.28.0.1035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On potential limitations of differential expression analysis with non-linear machine learning models
Recently, there has been a growing interest in bioinformatics toward the adoption of increasingly complex machine learning models for the analysis of next-generation sequencing data with the goal of disease subtyping (i.e., patient stratification based on molecular features) or risk-based classification for specific endpoints, such as survival. With gene-expression data, a common approach consists in characterising the emerging groups by exploiting a differential expression analysis, which selects relevant gene sets coupled with pathway enrichment analysis, providing an insight into the underlying biological processes. However, when non-linear machine learning models are involved, differential expression analysis could be limiting since patient groupings identified by the model could be based on a set of genes that are hidden to differential expression due to its linear nature, affecting subsequent biological characterisation and validation. The aim of this study is to provide a proof-of-concept example demonstrating such a limitation. Moreover, we suggest that this issue could be overcome by the adoption of the innovative paradigm of eXplainable Artificial Intelligence, which consists in building an additional explainer to get a trustworthy interpretation of the model outputs and building a reliable set of genes characterising each group, preserving also non-linear relations, to be used for downstream analysis and validation.