{"title":"沿平方整数的平均值:$\\ well ^p$改进和稀疏不等式","authors":"R. Han, M. Lacey, Fan Yang","doi":"10.2140/tunis.2021.3.517","DOIUrl":null,"url":null,"abstract":"Let $f\\in \\ell^2(\\mathbb Z)$. Define the average of $ f$ over the square integers by $ A_N f(x):=\\frac{1}{N}\\sum_{k=1}^N f(x+k^2) $. We show that $ A_N$ satisfies a local scale-free $ \\ell ^{p}$-improving estimate, for $ 3/2 < p \\leq 2$: \\begin{equation*} \nN ^{-2/p'} \\lVert A_N f \\rVert _{ p'} \\lesssim N ^{-2/p} \\lVert f\\rVert _{\\ell ^{p}}, \\end{equation*} provided $ f$ is supported in some interval of length $ N ^2 $, and $ p' =\\frac{p} {p-1}$ is the conjugate index. The inequality above fails for $ 1< p < 3/2$. The maximal function $ A f = \\sup _{N\\geq 1} |A_Nf| $ satisfies a similar sparse bound. Novel weighted and vector valued inequalities for $ A$ follow. A critical step in the proof requires the control of a logarithmic average over $ q$ of a function $G(q,x)$ counting the number of square roots of $x$ mod $q$. One requires an estimate uniform in $x$.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Averages along the Square Integers: $\\\\ell^p$ improving and Sparse Inequalities\",\"authors\":\"R. Han, M. Lacey, Fan Yang\",\"doi\":\"10.2140/tunis.2021.3.517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f\\\\in \\\\ell^2(\\\\mathbb Z)$. Define the average of $ f$ over the square integers by $ A_N f(x):=\\\\frac{1}{N}\\\\sum_{k=1}^N f(x+k^2) $. We show that $ A_N$ satisfies a local scale-free $ \\\\ell ^{p}$-improving estimate, for $ 3/2 < p \\\\leq 2$: \\\\begin{equation*} \\nN ^{-2/p'} \\\\lVert A_N f \\\\rVert _{ p'} \\\\lesssim N ^{-2/p} \\\\lVert f\\\\rVert _{\\\\ell ^{p}}, \\\\end{equation*} provided $ f$ is supported in some interval of length $ N ^2 $, and $ p' =\\\\frac{p} {p-1}$ is the conjugate index. The inequality above fails for $ 1< p < 3/2$. The maximal function $ A f = \\\\sup _{N\\\\geq 1} |A_Nf| $ satisfies a similar sparse bound. Novel weighted and vector valued inequalities for $ A$ follow. A critical step in the proof requires the control of a logarithmic average over $ q$ of a function $G(q,x)$ counting the number of square roots of $x$ mod $q$. One requires an estimate uniform in $x$.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2021.3.517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2021.3.517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
让$f\in \ell^2(\mathbb Z)$。定义$ f$除以平方整数的平均值$ A_N f(x):=\frac{1}{N}\sum_{k=1}^N f(x+k^2) $。我们证明$ A_N$满足一个局部无标度$ \ell ^{p}$ -改进估计,对于$ 3/2 < p \leq 2$: \begin{equation*} N ^{-2/p'} \lVert A_N f \rVert _{ p'} \lesssim N ^{-2/p} \lVert f\rVert _{\ell ^{p}}, \end{equation*},假设$ f$在长度为$ N ^2 $的某个区间内被支持,并且$ p' =\frac{p} {p-1}$是共轭指标。上面的不等式对于$ 1< p < 3/2$无效。极大函数$ A f = \sup _{N\geq 1} |A_Nf| $满足类似的稀疏界。接下来是$ A$的新的加权和向量值不等式。证明中的一个关键步骤需要控制一个函数$G(q,x)$对$ q$的对数平均值(计算$x$ mod $q$的平方根的个数)。在$x$中需要一个估计制服。
Averages along the Square Integers: $\ell^p$ improving and Sparse Inequalities
Let $f\in \ell^2(\mathbb Z)$. Define the average of $ f$ over the square integers by $ A_N f(x):=\frac{1}{N}\sum_{k=1}^N f(x+k^2) $. We show that $ A_N$ satisfies a local scale-free $ \ell ^{p}$-improving estimate, for $ 3/2 < p \leq 2$: \begin{equation*}
N ^{-2/p'} \lVert A_N f \rVert _{ p'} \lesssim N ^{-2/p} \lVert f\rVert _{\ell ^{p}}, \end{equation*} provided $ f$ is supported in some interval of length $ N ^2 $, and $ p' =\frac{p} {p-1}$ is the conjugate index. The inequality above fails for $ 1< p < 3/2$. The maximal function $ A f = \sup _{N\geq 1} |A_Nf| $ satisfies a similar sparse bound. Novel weighted and vector valued inequalities for $ A$ follow. A critical step in the proof requires the control of a logarithmic average over $ q$ of a function $G(q,x)$ counting the number of square roots of $x$ mod $q$. One requires an estimate uniform in $x$.