基于cnn的激光雷达slam位置识别技术

Y. Yang, S. Song, C. Toth
{"title":"基于cnn的激光雷达slam位置识别技术","authors":"Y. Yang, S. Song, C. Toth","doi":"10.5194/isprs-archives-xliv-m-2-2020-117-2020","DOIUrl":null,"url":null,"abstract":"Abstract. Place recognition or loop closure is a technique to recognize landmarks and/or scenes visited by a mobile sensing platform previously in an area. The technique is a key function for robustly practicing Simultaneous Localization and Mapping (SLAM) in any environment, including the global positioning system (GPS) denied environment by enabling to perform the global optimization to compensate the drift of dead-reckoning navigation systems. Place recognition in 3D point clouds is a challenging task which is traditionally handled with the aid of other sensors, such as camera and GPS. Unfortunately, visual place recognition techniques may be impacted by changes in illumination and texture, and GPS may perform poorly in urban areas. To mitigate this problem, state-of-art Convolutional Neural Networks (CNNs)-based 3D descriptors may be directly applied to 3D point clouds. In this work, we investigated the performance of different classification strategies utilizing a cutting-edge CNN-based 3D global descriptor (PointNetVLAD) for place recognition task on the Oxford RobotCar dataset.","PeriodicalId":14757,"journal":{"name":"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"97 1","pages":"117-122"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CNN-BASED PLACE RECOGNITION TECHNIQUE FOR LIDAR SLAM\",\"authors\":\"Y. Yang, S. Song, C. Toth\",\"doi\":\"10.5194/isprs-archives-xliv-m-2-2020-117-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Place recognition or loop closure is a technique to recognize landmarks and/or scenes visited by a mobile sensing platform previously in an area. The technique is a key function for robustly practicing Simultaneous Localization and Mapping (SLAM) in any environment, including the global positioning system (GPS) denied environment by enabling to perform the global optimization to compensate the drift of dead-reckoning navigation systems. Place recognition in 3D point clouds is a challenging task which is traditionally handled with the aid of other sensors, such as camera and GPS. Unfortunately, visual place recognition techniques may be impacted by changes in illumination and texture, and GPS may perform poorly in urban areas. To mitigate this problem, state-of-art Convolutional Neural Networks (CNNs)-based 3D descriptors may be directly applied to 3D point clouds. In this work, we investigated the performance of different classification strategies utilizing a cutting-edge CNN-based 3D global descriptor (PointNetVLAD) for place recognition task on the Oxford RobotCar dataset.\",\"PeriodicalId\":14757,\"journal\":{\"name\":\"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"97 1\",\"pages\":\"117-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xliv-m-2-2020-117-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xliv-m-2-2020-117-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要地点识别或闭环是一种识别以前在一个地区的移动传感平台访问过的地标和/或场景的技术。该技术能够对航位推算导航系统的漂移进行全局优化补偿,是在包括全球定位系统(GPS)拒绝环境在内的任何环境下稳健实现同时定位与制图(SLAM)的关键功能。三维点云中的位置识别是一项具有挑战性的任务,传统上需要借助相机和GPS等其他传感器来处理。不幸的是,视觉位置识别技术可能会受到光照和纹理变化的影响,而GPS在城市地区可能表现不佳。为了缓解这一问题,基于卷积神经网络(cnn)的三维描述符可以直接应用于三维点云。在这项工作中,我们研究了不同分类策略的性能,利用尖端的基于cnn的3D全局描述符(PointNetVLAD)在Oxford RobotCar数据集上进行位置识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-BASED PLACE RECOGNITION TECHNIQUE FOR LIDAR SLAM
Abstract. Place recognition or loop closure is a technique to recognize landmarks and/or scenes visited by a mobile sensing platform previously in an area. The technique is a key function for robustly practicing Simultaneous Localization and Mapping (SLAM) in any environment, including the global positioning system (GPS) denied environment by enabling to perform the global optimization to compensate the drift of dead-reckoning navigation systems. Place recognition in 3D point clouds is a challenging task which is traditionally handled with the aid of other sensors, such as camera and GPS. Unfortunately, visual place recognition techniques may be impacted by changes in illumination and texture, and GPS may perform poorly in urban areas. To mitigate this problem, state-of-art Convolutional Neural Networks (CNNs)-based 3D descriptors may be directly applied to 3D point clouds. In this work, we investigated the performance of different classification strategies utilizing a cutting-edge CNN-based 3D global descriptor (PointNetVLAD) for place recognition task on the Oxford RobotCar dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信