TellMyRelevance !:根据游标交互预测网络搜索结果的相关性

Maximilian Speicher, A. Both, M. Gaedke
{"title":"TellMyRelevance !:根据游标交互预测网络搜索结果的相关性","authors":"Maximilian Speicher, A. Both, M. Gaedke","doi":"10.1145/2505515.2505703","DOIUrl":null,"url":null,"abstract":"It is crucial for the success of a search-driven web application to answer users' queries in the best possible way. A common approach is to use click models for guessing the relevance of search results. However, these models are imprecise and waive valuable information one can gain from non-click user interactions. We introduce TellMyRelevance!---a novel automatic end-to-end pipeline for tracking cursor interactions at the client, analyzing these and learning according relevance models. Yet, the models depend on the layout of the search results page involved, which makes them difficult to evaluate and compare. Thus, we use a Random Mouse Cursor as an extension to our pipeline for generating layout-dependent baselines. Based on these, we can perform evaluations of real-world relevance models. A large-scale interaction log analysis showed that we can learn relevance models whose predictions compare favorably to predictions of an existing state-of-the-art click model.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"TellMyRelevance!: predicting the relevance of web search results from cursor interactions\",\"authors\":\"Maximilian Speicher, A. Both, M. Gaedke\",\"doi\":\"10.1145/2505515.2505703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is crucial for the success of a search-driven web application to answer users' queries in the best possible way. A common approach is to use click models for guessing the relevance of search results. However, these models are imprecise and waive valuable information one can gain from non-click user interactions. We introduce TellMyRelevance!---a novel automatic end-to-end pipeline for tracking cursor interactions at the client, analyzing these and learning according relevance models. Yet, the models depend on the layout of the search results page involved, which makes them difficult to evaluate and compare. Thus, we use a Random Mouse Cursor as an extension to our pipeline for generating layout-dependent baselines. Based on these, we can perform evaluations of real-world relevance models. A large-scale interaction log analysis showed that we can learn relevance models whose predictions compare favorably to predictions of an existing state-of-the-art click model.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

以最好的方式回答用户的查询对于搜索驱动的web应用程序的成功是至关重要的。一种常见的方法是使用点击模型来猜测搜索结果的相关性。然而,这些模型是不精确的,并且放弃了可以从非点击用户交互中获得的有价值的信息。我们推出TellMyRelevance!-一种新颖的自动端到端管道,用于跟踪客户端的光标交互,分析这些并根据相关模型进行学习。然而,这些模型依赖于所涉及的搜索结果页面的布局,这使得它们难以评估和比较。因此,我们使用随机鼠标光标作为生成依赖于布局的基线的管道的扩展。基于这些,我们可以对现实世界的相关模型进行评估。大规模的交互日志分析表明,我们可以学习相关模型,其预测比现有的最先进的点击模型的预测更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TellMyRelevance!: predicting the relevance of web search results from cursor interactions
It is crucial for the success of a search-driven web application to answer users' queries in the best possible way. A common approach is to use click models for guessing the relevance of search results. However, these models are imprecise and waive valuable information one can gain from non-click user interactions. We introduce TellMyRelevance!---a novel automatic end-to-end pipeline for tracking cursor interactions at the client, analyzing these and learning according relevance models. Yet, the models depend on the layout of the search results page involved, which makes them difficult to evaluate and compare. Thus, we use a Random Mouse Cursor as an extension to our pipeline for generating layout-dependent baselines. Based on these, we can perform evaluations of real-world relevance models. A large-scale interaction log analysis showed that we can learn relevance models whose predictions compare favorably to predictions of an existing state-of-the-art click model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信