密码谜题和复杂系统

IF 0.7 4区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Rade Vuckovac
{"title":"密码谜题和复杂系统","authors":"Rade Vuckovac","doi":"10.25088/complexsystems.30.3.375","DOIUrl":null,"url":null,"abstract":"A puzzle lies behind password authentication (PA) and blockchain proof of work (PoW). A cryptographic hash function is commonly used to implement them. The potential problem with secure hash functions is their complexity and rigidity. We explore the use of complex systems constructs such as a cellular automaton (CA) to provide puzzle functionality. The analysis shows that computational irreducibility and sensitivity to initial state phenomena are enough to create simple puzzle systems that can be used for PA and PoW. Moreover, we present puzzle schemata using CA and n-body problems.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryptographic Puzzles and Complex Systems\",\"authors\":\"Rade Vuckovac\",\"doi\":\"10.25088/complexsystems.30.3.375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A puzzle lies behind password authentication (PA) and blockchain proof of work (PoW). A cryptographic hash function is commonly used to implement them. The potential problem with secure hash functions is their complexity and rigidity. We explore the use of complex systems constructs such as a cellular automaton (CA) to provide puzzle functionality. The analysis shows that computational irreducibility and sensitivity to initial state phenomena are enough to create simple puzzle systems that can be used for PA and PoW. Moreover, we present puzzle schemata using CA and n-body problems.\",\"PeriodicalId\":50871,\"journal\":{\"name\":\"Advances in Complex Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Complex Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.25088/complexsystems.30.3.375\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.25088/complexsystems.30.3.375","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

密码认证(PA)和区块链工作量证明(PoW)背后存在一个难题。通常使用加密散列函数来实现它们。安全哈希函数的潜在问题是它们的复杂性和刚性。我们探索使用复杂的系统结构,如元胞自动机(CA)来提供拼图功能。分析表明,计算的不可约性和对初始状态现象的敏感性足以创建可用于PA和PoW的简单谜题系统。此外,我们还利用CA和n体问题提出了谜题图式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryptographic Puzzles and Complex Systems
A puzzle lies behind password authentication (PA) and blockchain proof of work (PoW). A cryptographic hash function is commonly used to implement them. The potential problem with secure hash functions is their complexity and rigidity. We explore the use of complex systems constructs such as a cellular automaton (CA) to provide puzzle functionality. The analysis shows that computational irreducibility and sensitivity to initial state phenomena are enough to create simple puzzle systems that can be used for PA and PoW. Moreover, we present puzzle schemata using CA and n-body problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Complex Systems
Advances in Complex Systems 综合性期刊-数学跨学科应用
CiteScore
1.40
自引率
0.00%
发文量
121
审稿时长
6-12 weeks
期刊介绍: Advances in Complex Systems aims to provide a unique medium of communication for multidisciplinary approaches, either empirical or theoretical, to the study of complex systems. The latter are seen as systems comprised of multiple interacting components, or agents. Nonlinear feedback processes, stochastic influences, specific conditions for the supply of energy, matter, or information may lead to the emergence of new system qualities on the macroscopic scale that cannot be reduced to the dynamics of the agents. Quantitative approaches to the dynamics of complex systems have to consider a broad range of concepts, from analytical tools, statistical methods and computer simulations to distributed problem solving, learning and adaptation. This is an interdisciplinary enterprise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信